Chapter 27 Threshold selection

In this example, we will

  • load and preprocess data
  • define a workflow
  • use cross-validation to determine a threshold using the F-statistic
  • train the final model
  • evaluate the model using cross-validation and holdout data
  • predict

using the Loan prediction dataset to illustrate the whole process.

Load the required packages:

Code
library(tidyverse)
library(tidymodels)

Load and preprocess the data:

Code
data <- read_csv("https://gedeck.github.io/DS-6030/datasets/loan_prediction.csv",
                 show_col_types=FALSE) %>%
    drop_na() %>%
    mutate(
        Gender=as.factor(Gender),
        Married=as.factor(Married),
        Dependents=gsub("\\+", "", Dependents) %>% as.numeric(),
        Education=as.factor(Education),
        Self_Employed=as.factor(Self_Employed),
        Credit_History=as.factor(Credit_History),
        Property_Area=as.factor(Property_Area),
        Loan_Status=factor(Loan_Status, levels=c("N", "Y"), labels=c("No", "Yes"))
    ) %>%
    select(-Loan_ID)

Split dataset into training and holdout data, prepare for cross-validation:

Code
set.seed(123)
data_split <- initial_split(data, prop=0.8, strata=Loan_Status)
train_data <- training(data_split)
holdout_data <- testing(data_split)

resamples <- vfold_cv(train_data, v=10, strata=Loan_Status)
cv_metrics <- metric_set(roc_auc, accuracy)
cv_control <- control_resamples(save_pred=TRUE)

Define the recipe, the model specification (elasticnet logistic regression), and combine them into a workflow:

Code
formula <- Loan_Status ~ Gender + Married + Dependents + Education + Self_Employed +
    ApplicantIncome + CoapplicantIncome + LoanAmount + Loan_Amount_Term +
    Credit_History + Property_Area
recipe_spec <- recipe(formula, data=train_data) %>%
    step_dummy(all_nominal(), -all_outcomes())

model_spec <- logistic_reg(engine="glm", mode="classification")

wf <- workflow() %>%
    add_model(model_spec) %>%
    add_recipe(recipe_spec)

Use the workflow for cross-validation and training the final model using the full dataset:

Code
result_cv <-  fit_resamples(wf, resamples, metrics=cv_metrics, control=cv_control)
fitted_model <- wf %>% fit(train_data)

Estimate model performance using the cross-validation results and the holdout data:

Code
cv_results <- collect_metrics(result_cv) %>%
    select(.metric, mean) %>%
    rename(.estimate=mean) %>%
    mutate(result="Cross-validation", threshold=0.5)
holdout_predictions <- augment(fitted_model, new_data=holdout_data)
holdout_results <-  bind_rows(
        c(roc_auc(holdout_predictions, Loan_Status, .pred_Yes, event_level="second")),
        c(accuracy(holdout_predictions, Loan_Status, .pred_class))) %>%
    select(-.estimator) %>%
    mutate(result="Holdout", threshold = 0.5)
Code
performance <- probably::threshold_perf(result_cv %>% collect_predictions(),
    Loan_Status, .pred_Yes, seq(0.1, 0.9, 0.01), event_level="second",
    metrics=metric_set(j_index, f_meas, kap))
Code
max_values <- performance %>%
    arrange(desc(.threshold)) %>%
    group_by(.metric) %>%
    filter(.estimate == max(.estimate)) %>%
    filter(row_number() == 1)
ggplot(performance, aes(x=.threshold, y=.estimate, color=.metric)) +
    geom_line() +
    geom_vline(data=max_values, aes(xintercept=.threshold, color=.metric))

We decide to select the threshold that maximizes the F-measure:

Code
threshold <- max_values %>%
    filter(.metric == "f_meas") %>%
    pull(.threshold)

We can now calculate the performance metrics using predictions at the selected threshold.

Code
cv_predictions <- collect_predictions(result_cv) %>%
    mutate(.pred_class = factor(ifelse(.pred_Yes >= threshold, "Yes", "No")))
cv_threshold_results <-  bind_rows(
        c(accuracy(cv_predictions, Loan_Status, .pred_class))
    ) %>%
    select(-.estimator) %>%
    mutate(result="Cross-validation", threshold=threshold)
holdout_predictions <- augment(fitted_model, new_data=holdout_data) %>%
    mutate(.pred_class = factor(ifelse(.pred_Yes >= threshold, "Yes", "No")))
holdout_threshold_results <-  bind_rows(
        c(accuracy(holdout_predictions, Loan_Status, .pred_class))
    ) %>%
    select(-.estimator) %>%
    mutate(result="Holdout", threshold=threshold)

The performance metrics are summarized in the following table.

Code
bind_rows(
    cv_results,
    holdout_results,
    cv_threshold_results,
    holdout_threshold_results,
) %>%
    pivot_wider(names_from=.metric, values_from=.estimate) %>%
    kableExtra::kbl(caption="Model performance metrics", digits=3) %>%
    kableExtra::kable_styling(full_width=FALSE)
Table 24.1: Model performance metrics
result threshold accuracy roc_auc
Cross-validation 0.50 0.799 0.752
Holdout 0.50 0.825 0.733
Cross-validation 0.46 0.802 NA
Holdout 0.46 0.835 NA

We can see that the reduced threshold leads to a higher accuracy.