
7.3 Analyzing Computer Experiments 271

#̂ = (J)R�1
⇡

J)�1 (J)R�1
⇡
H). (7.3.4)

where � is a vector of ones and '⇡ is the = ⇥ = matrix of correlations '(G8 , G 9 ).
The generalized least squares estimator, and the MLE, of 22 is

2̂2 =
(H � JV̂))R�1

⇡
(H � JV̂)

=

. (7.3.5)

The best linear unbiased predictor (BLUP) at an untried G is

Ĥ(G) = V̂ + r) (G)R̂�1
⇡
(H � � V̂) (7.3.6)

where A (G) = ['(G1, G), . . . , '(G=, G)]) is the vector of correlations between /’s at
the design points and at the new point G. The BLUP interpolates the observed output
at sites G that are in the training data.

Example 7.3 We can continue with the result from Example 7.2. We used a Latin
hypercube design to define 14 settings for the piston simulator. The result of the
simulation is given in Table 7.2.

The Python package pylibkriging implements kriging models for a larger
number of predictors.

import pylibkriging as lk
outcome = 'seconds'
predictors = ['m', 's', 'v0', 'k', 'p0', 't', 't0']

model = lk.Kriging(mean_result[outcome], mean_result[predictors], 'gauss')

We can assess the goodness of fit of the kriging model using leave-one-out cross-
validation. Leave-one-out cross-validation removes an observation from the dataset,
builds a model with the remaining data and predicts the left out data point. This is
repeated for all observations. The following Python code determines the leave-one-
out predictions for each data point.

def looValidation(data):
jackknife = []
for i, row in data.iterrows():

subset = data.drop(i)
model = lk.Kriging(subset[outcome], subset[predictors], 'gauss')
y_pred = model.predict([row[predictors]], True, False, False)
jackknife.append({

'actual': row[outcome],
'predicted': y_pred[0],

})
return pd.DataFrame(jackknife)

validation = looValidation(mean_result)

Using the calculated predicted and actual values, we get the following leave-one-
out performance metrics.

from sklearn import metrics
MAE = metrics.mean_absolute_error(validation['actual'], validation['predicted'])



272 7 Computer Experiments

Fig. 7.3: Leave-one-out cross-validation of kriging model

R2 = metrics.r2_score(validation['actual'], validation['predicted'])
print(f'MAE = {MAE:.4f}')
print(f'r2 {R2:.3f}', )

MAE = 0.0173
r2 0.628

Both metrics show that the model performs well. In Fig. 7.3, we compare the
observed value with the value predicted from the leave-one-out models. Points lying
close to the line of equality indicate a good fit of the model since the observed data
points are well predicted by the model.

We can derive marginal effect of factors on cycle time using the kriging model.
The result of this analysis is shown in Fig. 7.4. It confirms again that only v0 and s
have a strong effect on the average cycle time; all other factors have only little effect
on cycle time. Figure 7.5 shows the dependence of the cycle time across the full
range of v0 and s. ⌅

7.4 Stochastic Emulators

Traditional engineering practice augments deterministic design system predictions
with factors of safety or design margins to provide some assurance of meeting
requirements in the presence of uncertainty and variability in modeling assump-
tions, boundary conditions, manufacturing, materials, and customer usage. Modern
engineering practice is implementing quality by design methods to account for prob-
ability distributions of component or system performance characteristics. Chapter 4
provided several such examples, including the robust design approach developed by
Genichi Taguchi in Japan. At Pratt and Whitney, in the USA, Grant Reinman and his
team developed a methodology labeled design for variation (DFV) that incorporates



7.4 Stochastic Emulators 273

Fig. 7.4: Marginal effect of factors on cycle time derived from the kriging model

Fig. 7.5: Latin hypercube design for piston simulator


