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Chapter 1
Introduction to industrial statistics

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Exercise 1.1 Describe three work environments where quality is assured by 100%
inspection of outputs (as opposed to process control).

Solution 1.1 Examples of 100% inspection:

1. Airplane pilots rely heavily on checklists before takeoff. These lists provide a
systematic check on safety and functional items that can be verified by relatively
simple pilot inspection. The lists are used in every flight.

2. The education system relies on tests to evaluate what students learn in various
courses and classes. Tests are administered to all students attending a class. The
grades received on these tests reflect the student’s ability, the course syllabus
and training material, the instructor’s ability, the classroom environment, etc.

3. Production lines of electronic products typically include automatic testers that
screen products as PASS or FAIL. Failed products are directed to rework de-
partments where the problems are diagnosed and fixed before the products are
retested.

Exercise 1.2 Search periodicals, such as Business Week, Fortune, Time and Newsweek
and newspapers such as the New York Times and Wall Street Journal for information
on quality initiatives in service, healthcare, governmental and industrial organiza-
tions. Summarize three such initiatives indicating what was done and what were the
concrete outcomes of these initiatives.

Solution 1.2 Possible articles to evaluate are:

• https://www.industryweek.com/operations/quality/article/21213860/
quality-initiatives-deserve-better-from-industry-40

• https://www.nytimes.com/2017/03/13/upshot/lousy-customer-service-
a-better-way-in-health-care.html

• https://www.nytimes.com/2007/02/08/business/08scene.html
• https://www.wsj.com/articles/BL-CIOB-6959
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• https://www.newsweek.com/trends-opportunities-threats-manufacturing-
operations-management-software-market-1696962

Exercise 1.3 Provide examples of the three types of production systems.

(a) Continuous flow production.
(b) Discrete mass production
(c) Industry 4 production

Solution 1.3 Examples of production systems:

(a) Continuous flow production: Polymerization is used in the petroleum industry
and in the manufacture of synthetic rubber. In polymerization, a reaction occurs
in which two or more molecules of the same substance combined to form a
compound from which the original substance may or may not be regenerated.
Typical parameters affecting the process are feed rate, polymerizer temperature,
and sludge levels in the separator kettles. Typical measured responses are yield,
concentration, color, and texture.

(b) Discrete mass production: A college or university is, in fact, a discrete mass pro-
duction system where students are acquiring knowledge and experience through
various combinations of classes, laboratories, projects, and homework assign-
ments.

(c) Job shop: Modern print houses are typical job shop operations. Customers
provide existing material, computer files, or just an idea. The print house is re-
sponsible for producing hard copies in various sizes, colours, and quantities. The
process involves several steps combining human labor with machine processing.

Exercise 1.4 What management approach cannot work with continuous flow pro-
duction?

Solution 1.4 Sample inspection for acceptance sampling procedures determining
the quality of batches of units.

Exercise 1.5 What management approach characterizes

(a) A school system?
(b) A group of scouts?
(c) A football team?

Solution 1.5 (a) A school system?: In most cases, school systems rely on individ-
ual learning combined with 100% inspection. Many schools also encourage
cooperative learning efforts such as team projects.

(b) A military unit?: Traditionally, this is a classical organization operating with
strict regulations and 100% inspection. Improvements are achieved through
training and exercises with comprehensive performance reviews.

(c) A football team?: Serious sports teams invest huge efforts in putting together a
winning team combination. This includes screening and selection, team building
exercises, on-going feedback during training and games, and detailed analysis
and review of self and other teams performance.

https://www.newsweek.com/trends-opportunities-threats-manufacturing-operations-management-software-market-1696962 
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Exercise 1.6 Provide examples of how you, personally, apply inspection, process
control or quality by design approaches.

(a) As a student.
(b) In your parents’ house.
(c) With your friends

Solution 1.6 Examples of how you personally apply the four management ap-
proaches:

a) As a student:With an old car that you maintain with a “don’t fix what ain’t
broke” strategy you are fire fighting. Reviewing your bank account statements
is typically done on a 100% basis. Serious learning involves on going process
control to assure success in the final exam. Proper preparation, ahead of time,
through self study and learning from the experience of others is a form of
ensuring quality by design.

b) In your parent’s home: This is a personal exercise for self thinking.
c) With your friends: This is also a personal exercise for self thinking.

Exercise 1.7 Evaluate the information quality of a case study provided by your
instructor.

Solution 1.7 Three case studies are provided in slides 20, 21 and 22 in https://
ceeds.unimi.it/wp-content/uploads/2020/02/Kenett_Analytics_2020-

1.pdf. Their information quality assessment is provided in slides 45-59.

https:// ceeds.unimi.it/wp-content/uploads/2020/02/Kenett_Analytics_2020- 1.pdf
https:// ceeds.unimi.it/wp-content/uploads/2020/02/Kenett_Analytics_2020- 1.pdf
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Chapter 2
Basic Tools and Principles of Process Control

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import numpy as np
import pandas as pd
import pingouin as pg
from scipy import stats
import statsmodels.api as sm
import statsmodels.formula.api as smf
import statsmodels.stats as sms
from statsmodels.graphics.mosaicplot import mosaic
import seaborn as sns
import matplotlib.pyplot as plt
import pwlf

import mistat

Exercise 2.1 Use Python and dataset OELECT.csv to chart the individual electrical
outputs of the 99 circuits. Do you observe any trend or non-random pattern in
the data? [Use under SPC the option of Individual chart. For Mu and Sigma use
“historical” values, which are �̄� and 𝑆.]

Solution 2.1 The following Python code creates the chart shown in Fig. 2.1.

oelect = mistat.load_data('OELECT')
qcc = mistat.QualityControlChart(oelect, qcc_type='xbarone',

std_dev='SD')
qcc.plot()
plt.show()

It seems that the data are randomly distributed around a mean value of 219.25.

Exercise 2.2 Chart the individual variability of the length of steel rods, in dataset
STEELROD.csv. Is there any perceived assignable cause of non-randomness?

Solution 2.2 The following Python code creates the chart shown in Fig. 2.2.

9
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Fig. 2.1: X-barone chart of OELECT.csv dataset

steelrod = mistat.load_data('STEELROD')
qcc = mistat.QualityControlChart(steelrod, qcc_type='xbarone',

std_dev='SD')
qcc.plot()
plt.show()

It seems that the data are randomly distributed around a mean value of 19.89.

Exercise 2.3 Examine the chart of the previous exercise for possible patterns of
non-randomness.

Solution 2.3 No patterns of non-randomness are apparent.

Exercise 2.4 Test the data in dataset OTURB2.csv for lack of randomness. In this
dataset we have three columns. In the first we have the sample size. In the second
and third we have the sample means and standard deviation. Chart the individual
means. For the historical mean use the mean of column xbar. For historical standard
deviation use (�̂�2/5)1/2, where �̂�2 is the pooled sample variance.

Solution 2.4 The following Python code creates the chart shown in Fig. 2.3.

oturb2 = mistat.load_data('OTURB2')
# print(oturb2)
sd = np.sqrt(oturb2['xbar'].var() / 5)
center = oturb2['xbar'].mean()
print(sd, center)
qcc = mistat.QualityControlChart(oturb2['xbar'], qcc_type='xbarone',
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Fig. 2.2: X-barone chart of the STEELROD.csv dataset

center=center, std_dev=sd)
qcc.plot()
plt.show()

0.07199111056234651 0.6526

We can see a downward trend in the data.

Exercise 2.5 A sudden change in a process lowers the process mean by one standard
deviation. It has been determined that the quality characteristic being measured is
approximately normally distributed and that the change had no effect on the process
variance:

(a) What percentage of points are expected to fall outside the control limits on the
�̄�-chart if the subgroup size is 4?

(b) Answer the same question for subgroups of size 6.
(c) Answer the same question for subgroups of size 9.

Solution 2.5 If �̄�𝑛 ∼ 𝑁 (` −𝜎, 𝜎√
𝑛
) the proportion of points expected to fall outside

the control limits is

𝜋𝑛 ≡ Pr
{
�̄�𝑛 < ` −

3𝜎
√
𝑛

}
+ Pr

{
�̄�𝑛 > ` +

3𝜎
√
𝑛

}
.

(a) For 𝑛 = 4, 𝜋𝑛 = 0.159; (b) For 𝑛 = 6, 𝜋𝑛 = 0.291; (c) For 𝑛 = 9, 𝜋𝑛 = 0.500.
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Fig. 2.3: X-barone chart of the OTURB2.csv dataset

Exercise 2.6 Make capability analysis of the electric output (volts) of 99 circuits in
dataset OELECT.csv, with target value of `0 = 220 and 𝐿𝑆𝐿 = 210,𝑈𝑆𝐿 = 230.

Solution 2.6 In Python:

oelect = mistat.load_data('OELECT')

qcc = mistat.QualityControlChart(oelect, qcc_type='xbarone',
std_dev='SD')

pc = mistat.ProcessCapability(qcc, spec_limits = [210, 230])
pc.plot()
plt.show()
pc.summary()

Process Capability Analysis

Number of obs = 99 Target = 220.00
Center = 219.25 LSL = 210.00
StdDev = 4.014219 USL = 230.00

Capability indices:

Value 2.5% 97.5%
Cp 0.8304 0.7142 0.9463
Cp_l 0.7679 0.6622 0.8737
Cp_u 0.8928 0.7743 1.0113
Cp_k 0.7679 0.6420 0.8939
Cpm 0.8162 0.7007 0.9315

Exp<LSL 1% Obs<LSL 0%
Exp>USL 0% Obs>USL 0%



2 Basic Tools and Principles of Process Control 13

210 215 220 225 230

LSL Target USL

Number of obs = 99
Center = 219.25
StdDev = 4.0142

Target = 2.2e+02
LSL = 2.1e+02
USL = 2.3e+02

Cp = 0.83
Cp_l = 0.77
Cp_u = 0.89
Cp_k = 0.77
Cpm = 0.82

Exp<LSL = 1.1%
Exp>USL = 0.37%
Obs<LSL = 0%
Obs>USL = 0%

Fig. 2.4: Process capability analysis of OELECT.csv dataset

Performing the capability analysis (see Fig. 2.4) we found that 𝐶𝑝 = 0.83.
Although 𝐶𝑝 = 0.83, there is room for improvement by designing the process with
reduced variability. See Chap. 5.

Exercise 2.7 Estimate the capability index 𝐶𝑝𝑘 for the output of the electronic cir-
cuits, based on dataset OELECT.csv when 𝐿𝑆𝐿 = 210 and𝑈𝑆𝐿 = 230. Determine
the point estimate as well as its confidence interval, with confidence level 0.95.

Solution 2.7 Using the mistat package, we get:

oelect = mistat.load_data('OELECT')
qcc = mistat.QualityControlChart(oelect, qcc_type='xbarone',

std_dev=4.004, center=219.25)
pc = mistat.ProcessCapability(qcc, spec_limits = [210, 230],

confidence_level=0.975)
pc.summary()
pc = mistat.ProcessCapability(qcc, spec_limits = [210, 230],

confidence_level=0.95)
pc.summary()

Process Capability Analysis

Number of obs = 99 Target = 220.00
Center = 219.25 LSL = 210.00
StdDev = 4.004000 USL = 230.00

Capability indices:

Value 2.5% 97.5%
Cp 0.8325 0.7002 0.9663
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Cp_l 0.7701 0.6438 0.8963
Cp_u 0.8949 0.7535 1.0364
Cp_k 0.7701 0.6257 0.9144
Cpm 0.8183 0.6868 0.9513

Exp<LSL 1% Obs<LSL 0%
Exp>USL 0% Obs>USL 0%
Process Capability Analysis

Number of obs = 99 Target = 220.00
Center = 219.25 LSL = 210.00
StdDev = 4.004000 USL = 230.00

Capability indices:

Value 2.5% 97.5%
Cp 0.8325 0.7161 0.9488
Cp_l 0.7701 0.6641 0.8760
Cp_u 0.8949 0.7762 1.0136
Cp_k 0.7701 0.6438 0.8963
Cpm 0.8183 0.7025 0.9339

Exp<LSL 1% Obs<LSL 0%
Exp>USL 0% Obs>USL 0%

With �̄� = 219.25, 𝑆 = 4.004, 𝑛 = 99, b𝑈 = 230 and b𝐿 = 210 we obtained
�̂�𝑝𝑙 = 0.77, �̂�𝑝𝑢 = 0.895 and �̂�𝑝𝑘 = 0.77.

The mistat implementation uses the normal distribution to calculate confidence
intervals. Using the F-distribution with 𝐹0.975 [1, 98] = 5.1982, we get:

def confidenceLimitSL(Cp, n, alpha):
F = stats.f(1, n-1).ppf(1-(1-alpha)/2)
a = np.sqrt(F/n) * np.sqrt(Cp**2/2 + (1 - F/(2*n))/9)
b = 1 - F/(2*n)
return (Cp - a) / b, (Cp + a )/ b

n = len(oelect)
rho_1L, rho_1U = confidenceLimitSL(pc.Cp_l, n, 0.95)
rho_2L, rho_2U = confidenceLimitSL(pc.Cp_u, n, 0.95)
print(rho_1L, rho_1U)
print(rho_2L, rho_2U)

0.6413037077789147 0.9402124117777945
0.7514350333838329 1.0865431596145048

The confidence intervals for 𝐶𝑝𝑙 and 𝐶𝑝𝑢, at 0.95 confidence level, are:

Lower Limit Upper Limit

𝐶𝑝𝑙 0.6413 0.9402
𝐶𝑝𝑢 0.7514 1.0865

𝐶𝑝𝑘 0.6413 0.9402

The 0.95-Confidence interval for 𝐶𝑝𝑘
is (0.6413, 0.9402).

Exercise 2.8 Estimate the capability index for the steel rods, given in dataset
STEELROD.csv, when the length specifications are b𝐿 = 19 and b𝑈 = 21 [cm]
and the level of confidence is 1 − 𝛼 = 0.95.
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Solution 2.8 In Python:

steelrod = mistat.load_data('STEELROD')
qcc = mistat.QualityControlChart(steelrod, qcc_type='xbarone',

std_dev='SD')
pc = mistat.ProcessCapability(qcc, spec_limits = [19, 21],

confidence_level=0.95)
pc.summary()

Process Capability Analysis

Number of obs = 50 Target = 20.00
Center = 19.89 LSL = 19.00
StdDev = 1.129109 USL = 21.00

Capability indices:

Value 2.5% 97.5%
Cp 0.2952 0.2369 0.3534
Cp_l 0.2628 0.1738 0.3518
Cp_u 0.3276 0.2329 0.4224
Cp_k 0.2628 0.1568 0.3688
Cpm 0.2938 0.2361 0.3514

Exp<LSL 22% Obs<LSL 22%
Exp>USL 16% Obs>USL 20%

Using the STEELROD.csv data with b𝐿 = 19 and b𝑈 = 21 we obtained �̂�𝑝 =

0.295, �̂�𝑝𝑢 = 0.328, �̂�𝑝𝑙 = 0.263 and �̂�𝑝𝑘 = 0.263. We use the function from the
previous exercise to calculat the confidence interval.

n = len(steelrod)
rho_1L, rho_1U = confidenceLimitSL(pc.Cp_l, n, 0.95)
rho_2L, rho_2U = confidenceLimitSL(pc.Cp_u, n, 0.95)
print(rho_1L, pc.Cp_l, rho_1U)
print(rho_2L, pc.Cp_u, rho_2U)

0.14851207708654524 0.26280004915567645 0.40677992256113854
0.2084480020651775 0.32763581095436156 0.4838408510212421

A 0.95-confidence interval for 𝐶𝑝𝑘 is (0.1485, 0.4068).

Exercise 2.9 The specification limits of the piston cycle times are 0.05 ± 0.01
seconds. Generate 20 cycle times at the lower level of the 7 control parameters:

(a) Compute 𝐶𝑝 and 𝐶𝑝𝑘 .
(b) Compute a 95% confidence interval for 𝐶𝑝𝑘 .

Generate 20 cycle times at the upper level of the 7 control factors:

(c) Recompute 𝐶𝑝 and 𝐶𝑝𝑘 .
(d) Recompute a 95% confidence interval for 𝐶𝑝𝑘 .
(e) Is there a significant difference in process capability between lower and upper

operating levels in the piston simulator?

Solution 2.9 Simulate 20 observations at the low level of the 7 control parameters.
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settings = {'m': 30, 's': 0.005, 'k': 1000, 't': 290,
'p0': 90_000, 'v0': 0.002, 't0': 340}

simulator = mistat.PistonSimulator(n_simulation=20, n_replicate=1, seed=1,

**settings)
Ps = simulator.simulate()
cycleTime = mistat.qcc_groups(Ps['seconds'], Ps['group'])

qcc = mistat.QualityControlChart(cycleTime, std_dev= Ps['seconds'].std())
print(f'Mean {qcc.center:.4f}')
print(f'Std.Dev {qcc.std_dev:.4f}')

Mean 0.0257
Std.Dev 0.0078

If all the 7 control parameters are at their low level, the mean cycle time of 20
observations is �̄�20 = 0.0257. This value is outside the specification limits, 0.04 and
0.06. Thus the process, at the low parameter values is incapable of satisfying the
specs. The standard deviation is 𝑆20 = 0.0078.

(a) Calclate the capability index 𝐶𝑝

pc = mistat.ProcessCapability(qcc, spec_limits = [0.04, 0.06],
confidence_level=0.95)

print(f'C_p {pc.Cp:.3f}')

C_p 0.425

If the process mean can be moved to 0.05, the 𝐶𝑝 value is 0.425.
(b) A 95% confidence limit for 𝐶𝑝𝑘 is:

print(f'95% confidence limits [{pc.Cp_k_limits[0]:.3f}, {pc.Cp_k_limits[1]:.3f}]')

95% confidence limits [-0.366, -0.850]

Note that the mistat.QualityControlChart class calculates the confidence limits
using a normal approximation.

(c) Under the high values of the seven control parameters we get

settings = {'m': 60, 's': 0.02, 'k': 5_000, 't': 296,
'p0': 110_000, 'v0': 0.01, 't0': 360}

simulator = mistat.PistonSimulator(n_simulation=20, n_replicate=1, seed=1, **settings)
Ps = simulator.simulate()
cycleTime = mistat.qcc_groups(Ps['seconds'], Ps['group'])
qcc = mistat.QualityControlChart(cycleTime, std_dev= Ps['seconds'].std())
print(f'Mean {qcc.center:.4f}')
print(f'Std.Dev {qcc.std_dev:.4f}')

Mean 0.0568
Std.Dev 0.0037

�̄�20 = 0.0568 and 𝑆20 = 0.0037. The mean is within the specification limit
0.05 ± 0.01.

For these values, we get the following for the capability indices.
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pc = mistat.ProcessCapability(qcc, spec_limits = [0.04, 0.06],
confidence_level=0.95)

pc.summary()

Process Capability Analysis

Number of obs = 20 Target = 0.05
Center = 0.06 LSL = 0.04
StdDev = 0.003720 USL = 0.06

Capability indices:

Value 2.5% 97.5%
Cp 0.8960 0.6135 1.1782
Cp_l 1.5090 1.0881 1.9298
Cp_u 0.2830 0.1390 0.4270
Cp_k 0.2830 0.1115 0.4546
Cpm 0.4281 0.2543 0.6020

Exp<LSL 0% Obs<LSL 0%
Exp>USL 20% Obs>USL 10%

The values are: 𝐶𝑝 = 0.890 and 𝐶𝑝𝑘 = 0.283.
(d) Under the normal approximation the confidence interval for𝐶𝑝𝑘 , at level 0.95,

is (0.1115, 0.4546).
(e) As mentioned above, the gas turbine at low control levels is incapable of

satisfying the specifications of 0.05 ± 0.01 seconds. At high levels its 𝐶𝑝𝑘 is not
greater than 0.282. In Chap. 5, we study experimental methods for finding the
combination of control levels, which maximizes the capability.

Exercise 2.10 A fiber manufacturer has a large contract that stipulates that its fiber,
among other properties, has tensile strength greater than 1.800 [grams/fiber] in 95%
of the fibers used. The manufacturer states the standard deviation of the process is
0.015 grams.

(a) Assuming a process under statistical control, what is the smallest nominal value
of the mean that will assure compliance with the contract?

(b) Given the nominal value in part a) what are the control limits of �̄� and 𝑆-charts
for subgroups of size 6?

(c) What is the process capability, if the process mean is ` = 1.82?

Solution 2.10 (a) 1.8247 calculated in Python

std = 0.015

nominal_value = 1.8 + stats.norm(0, std).ppf(0.95)
nominal_value

1.8246728044042722

(b) Using ¯̄𝑋 ± 3�̂�/
√
𝑛, we get 1.8063 and 1.8430.

nominal_value - 3 * std / np.sqrt(6), nominal_value + 3 * std / np.sqrt(6)

(1.8063016313333984, 1.843043977475146)
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(c) 𝐶𝑝𝑘 = 0.44.

Cpk = (1.82 - 1.80) / (3 * std)
print(Cpk)

0.44444444444444486

Exercise 2.11 The output voltage of a power supply is specified as 350±5 volts DC.
Subgroups of four units are drawn from every batch and submitted to special quality
control tests. The data from 30 subgroups on output voltage produced

∑30
𝑖=1 �̄� =

10, 950.00 and
∑30

𝑖=1 𝑅𝑖 = 77.32:

(a) Compute the control limits for �̄� and 𝑅.
(b) Assuming statistical control and a normal distribution of output voltage, what

properties of defective product are being made?
(c) If the power supplies are set to a nominal value of 350 volts, what is now the

proportion of defective products?
(d) Compute the new control limits for �̄� and 𝑅.
(e) If these new control limits are used but the adjustment to 350 volts is not

carried out, what is the probability that this fact will not be detected on the first
subgroup?

(f) What is the process capability before and after the adjustment of the nominal
value to 350 volts? Compute both 𝐶𝑝 and 𝐶𝑝𝑘 .

Solution 2.11 (a) ¯̄𝑋 = 10950
30 = 365, �̄� = 77.32, 𝑛 = 4, �̂� = �̄�/𝑑 (𝑛) = 1.252. The

control limits for �̄�4 are

𝑈𝐶𝐿 = 365 + 3 × 1.252
√

4
= 366.878 and 𝐿𝐶𝐿 = 365 − 3 × 1.252

√
4

= 363.122.

(b) When 𝑋 ∼ 𝑁 (` = 365, 𝜎 = 1.252),

1 − Pr{365 < 𝑋 < 375} = 1 −Φ

(
375 − 365

1.252

)
+Φ

(
365 − 365

1.252

)
= 0.5.

(c) When 𝑋 ∼ 𝑁 (` = 370, 𝜎 = 1.252),

1 − Pr{365 < 𝑋 < 375} = 2 ×
(
1 −Φ

(
5

1.252

))
= 0.000065.

(d)𝑈𝐶𝐿 = 370 + 3 × 1.252√
4

= 371.878 and 𝐿𝐶𝐿 = 370 − 3 × 1.252√
4

= 368.122.
(e) When �̄�4 ∼ 𝑁 (` = 365, 𝜎 = 1.252/

√
4),

Pr{368.122 < �̄�4 < 371.878} =

Φ

(
371.878 − 365

1.252/
√

4

)
−Φ

(
368.122 − 365

1.252/
√

4

)
= 0.
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(f) The process capability before and after the adjustment is

Before After

𝐶𝑝 1.331 1.331
𝐶𝑝𝑘 0 1.331

Exercise 2.12 The following data were collected in a circuit pack production plant
during October.

Number of
nonconformities

Missing component 293
Wrong component 431
Too much solder 120
Insufficient solder 132
Failed component 183

An improvement team recommended several changes that were implemented in the
first week of November. The following data were collected in the second week of
November.

Number of
nonconformities

Missing component 34
Wrong component 52
Too much solder 25
Insufficient solder 34
Failed component 18

(a) Construct Pareto charts of the nonconformities in October and the second week
of November.

(b) Has the improvement team produced significant differences in the type of non-
conformities?

Solution 2.12 (a) Fig. 2.5 is created using the following code

october = pd.DataFrame([
['Missing component', 293],
['Wrong component', 431],
['Too much solder', 120],
['Insufficient solder', 132],
['Failed component', 183],

], columns=['Issue', 'Count'])
november = pd.DataFrame([
['Missing component', 34],
['Wrong component', 52],
['Too much solder', 25],
['Insufficient solder', 34],
['Failed component', 18],

], columns=['Issue', 'Count'])

def makeParetoChart(data, ax, title):
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Fig. 2.5: Pareto chart noconformities in October and the second week of November

paretoChart = mistat.ParetoChart(data['Count'], labels=data['Issue'])
paretoChart.plot(rotation=30, ha='right', ax=ax)
ax.set_title(title)

fig, axes = plt.subplots(ncols=2, figsize=(8,4))
makeParetoChart(october, axes[0], 'October')
makeParetoChart(november, axes[1], 'November (2nd week)')
fig.suptitle('')
plt.tight_layout()
plt.show()

(b) Using the test described in Sect. 2.6 we find that the improvement team has
produced significant differences in the type of nonconformities. In particular, the
difference in the ‘Insufficient solder’ category is significant at the 1% level and the
difference in the ‘Too much solder’ category is significant at the 10% level (see
Table 2.4). The computations involved are summarized in Table 2.1.

Table 2.1: Computations for Pareto significance analysis (Exercise 2.12)

Category October p November Expected (Obs. - Exp.) Z

Missing 293 0.253 34 41.239 -7.239 -1.304
Wrong 431 0.372 52 60.636 -8.636 -1.399

Too Much 120 0.103 25 16.789 8.211 2.116
Insufficient 132 0.114 34 18.582 15.418 3.800

Failed 183 0.158 18 25.754 -7.754 -1.665

Total 1159 163

Exercise 2.13 Control charts for �̄� and 𝑅 are maintained on total soluble solids
produced at 20◦C in parts per million (ppm). Samples are drawn from production
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containers every hour and tested in a special test device. The test results are organized
into subgroups of 𝑛 = 5 measurements, corresponding to 5 hours of production.
After 125 hours of production we find that

∑25
𝑖=1 �̄�𝑖 = 390.8 and

∑25
𝑖=1 𝑅𝑖 = 84. The

specification on the process states that containers with more than 18 ppm of total
soluble solids should be reprocessed.

(a) Compute an appropriate capability index.
(b) Assuming a normal distribution and statistical control, what proportion of the

sample measurements are expected to be out of spec?
(c) Compute the control limits for �̄� and 𝑅.

Solution 2.13 From the data, ¯̄𝑋 = 15.632 ppm and �̄� = 3.36. An estimate of the
process standard deviation is ˆ̂𝜎 = �̄�/𝑑 (5) = 1.4446.

(a) 𝐶𝑝𝑢 = 18−15.632
3∗ ˆ̂𝜎 = 0.546.

(b) The proportion expected to be out of spec is 0.051.
(c) The control limits for �̄� are 𝐿𝐶𝐿 = 13.694 and 𝑈𝐶𝐿 = 17.570. The control

limits for 𝑅5 are 𝐿𝐶𝐿 = 0 and𝑈𝐶𝐿 = 7.106.

Exercise 2.14 Part I: Run the piston simulator at the lower levels of the 7 piston
parameters and generate 100 cycle times. Add 0.02 to the last 50 cycle times.

(a) Compute control limits of �̄� and 𝑅 by constructing subgroups of size 5, and
analyze the control charts.

Part II: Randomly shuffle the cycle times using the Python function random.sample.

(b) Recompute the control limits of �̄� and 𝑅 and reanalyze the control charts.
(c) Explain the differences between (a) and (b).

Solution 2.14 Part I (a) Fig. 2.6 is created using the following code.

settings = {'m': 30, 's': 0.005, 'v0': 0.002, 'k': 1000,
'p0': 90_000, 't': 290, 't0': 340}

simulator = mistat.PistonSimulator(n_simulation=20, n_replicate=5, seed=1, **settings)
Ps = simulator.simulate()

# Add 0.02 seconds to last 50 simulation results
Ps.loc[50:,'seconds'] = Ps.loc[50:,'seconds'] + 0.02

def makeQCCplot(data, reference, qcc_type, title):
# convert to groups
data = mistat.qcc_groups(data['seconds'], data['group'])
reference = mistat.qcc_groups(reference['seconds'], reference['group'])
# calculate control limits based on reference data
qcc_ref = mistat.QualityControlChart(reference, qcc_type=qcc_type)
qcc = mistat.QualityControlChart(data, qcc_type=qcc_type,

center=qcc_ref.center, limits=qcc_ref.limits)
return qcc.plot(title=title)

# create xbar and R control charts
reference = Ps.iloc[:50, ]

makeQCCplot(Ps, reference, 'xbar', 'for cycleTime')
plt.show()
makeQCCplot(Ps, reference, 'R', 'for cycleTime')
plt.show()
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Fig. 2.6: Control charts for time shift Piston simulation (Excercise 2.14)
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See the control charts in Fig. 2.6. The increase in cycle times after group 9 is so
large that the means of the subgroup are immediately out of the control limits. The
shift has no influence on the ranges within subgroups.

Part II (b) Fig. 2.7 is created using the following code.

# Ps['seconds'] = random.sample(Ps['seconds'], len(Ps['seconds']))

# alternative approach
# Ps['seconds'] = Ps['seconds'].sample(frac=1).values

makeQCCplot(Ps, Ps, 'xbar', 'for cycleTime')
plt.show()
makeQCCplot(Ps, Ps, 'R', 'for cycleTime')
plt.show()

See the control charts in Fig. 2.7. Due to the randomization of the cycle times, the
increased values are distributed over all groups and the mean cycle time increases
by 0.01 The variability as shown in the R chart is is increased too.

Exercise 2.15 Part I: Run the piston simulator by specifying the 7 piston parameters
within their acceptable range. Record the 7 operating levels you used and generate
20 subgroups of size 5.

1. Compute the control limits for �̄� and 𝑆.

Part II: Rerun the piston simulator at the same operating conditions and generate
20 subgroups of size 10.

2. Recompute the control limits for �̄� and 𝑆.
3. Explain the differences between (a) and (b).

Solution 2.15 Part I (a): We run the simulation with all 7 control parameters at their
lowest value. We obtained ¯̄𝑋 = 0.0234, 𝑆 = 0.0068.

settings = {'m': 30, 's': 0.005, 'v0': 0.002, 'k': 1000,
'p0': 90_000, 't': 290, 't0': 340}

simulator = mistat.PistonSimulator(n_simulation=20, n_replicate=5, seed=1, **settings)
Ps = simulator.simulate()
data = mistat.qcc_groups(Ps['seconds'], Ps['group'])
for qcc_type in ('xbar', 'S'):
qcc = mistat.QualityControlChart(data, qcc_type=qcc_type)
print(f'{qcc_type:4s} Center {qcc.center:.4f} Control limits ' +

f'[{qcc.limits.LCL[0]:.5f}, {qcc.limits.UCL[0]:.4f}]')

xbar Center 0.0234 Control limits [0.01354, 0.0333]
S Center 0.0068 Control limits [0.00000, 0.0141]

Part II (b): We obtained ¯̄𝑋 = 0.0253, 𝑆 = 0.0093.

simulator = mistat.PistonSimulator(n_simulation=20, n_replicate=10, seed=1, **settings)
Ps = simulator.simulate()
data = mistat.qcc_groups(Ps['seconds'], Ps['group'])
for qcc_type in ('xbar', 'S'):
qcc = mistat.QualityControlChart(data, qcc_type=qcc_type)
print(f'{qcc_type:4s} Center {qcc.center:.4f} Control limits ' +

f'[{qcc.limits.LCL[0]:.5f}, {qcc.limits.UCL[0]:.4f}]')
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Fig. 2.7: Control charts for randomized cycle time in Piston simulation (Excer-
cise 2.14)
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xbar Center 0.0253 Control limits [0.01623, 0.0344]
S Center 0.0093 Control limits [0.00264, 0.0159]

(c) We see that the control limits of �̄�10 and of 𝑆10 are closer to the center line
than those of �̄�5 and 𝑆5, respectively.

Exercise 2.16 Repeat the data segment analysis from Sect. 2.8.2 with a piecewise
linear regression fit. This can be done using pwlf.PiecewiseLinFit initialized with
the keyword argument degree=1.
(a) Prepare models with a variety of knots.
(b) Compare the results to the step function fits.
(c) When would you use a piecewise linear fit compared to a step function fit?

Solution 2.16 (a) Use code like the following to explore piecewise linear fits to the
sensor data using different number of knots.

data = mistat.load_data('PROCESS_SEGMENT')

def sensorData(data, label):
series = data[label]
return pd.DataFrame({

'Time': np.arange(len(series)),
'values': series,

})

sensorX = sensorData(data, 'X')
sensorZ = sensorData(data, 'Z')

def fitPiecewiseLinearFit(sensor, knots):
model = pwlf.PiecewiseLinFit(sensor['Time'], sensor['values'], degree=1)
model.fit(knots)
return model

modelX = fitPiecewiseLinearFit(sensorX, 6)
modelZ = fitPiecewiseLinearFit(sensorZ, 3)

def plotPiecewiseLinearFit(sensor, model, ax, label):
for bp in model.fit_breaks[1:-1]:

ax.axvline(bp, color='lightgrey')
ax.scatter(sensor['Time'], sensor['values'], color='grey', alpha=0.5)
ax.plot(sensor['Time'], model.predict(sensor['Time']), color='black')
ax.set_xlabel('Time')
ax.set_ylabel(label)
return ax

fig, axes = plt.subplots(ncols=2, figsize=(8,4))
plotPiecewiseLinearFit(sensorX, modelX, axes[0], 'Sensor X')
plotPiecewiseLinearFit(sensorZ, modelZ, axes[1], 'Sensor Z')
plt.tight_layout()
plt.show()

The figure shows results for sensor X and sensor Z data. By trying different
number of segments, we can see that we require 6 segments for the sensor X data
while 3 segments are sufficient for sensor Z. In contrast to the step function fit, the
piecewise linear function doesn’t enforce the linear segments to have a slope of 0.
While visually, we can see that the segment that is characteristics for a progress under
control are essentially horizontal, it is useful to analyze the individual segments. The
slope can be extracted from the model using the method modelX.calc slopes(). We
get:
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Fig. 2.8: Piecewise linear fits of sensor X and sensor Z data

Sensor X
Range slope prediction

Segment 1 Time < 894.3 35.30 26.3–4634.1
Segment 2 130.5 ≤ Time < 894.3 -0.02 4634.1–4619.8
Segment 3 894.3 ≤ Time < 910.7 32.89 4619.8–5158.9
Segment 4 910.7 ≤ Time < 1426.3 -0.43 5158.9–4936.1
Segment 5 1426.3 ≤ Time < 1502.6 -63.67 4936.1–77.9
Segment 6 1502.6 ≤ Time -0.02 77.9–70.0

Sensor Z
Range slope prediction

Segment 1 Time < 831.1 38.97 125.2–4813.7
Segment 2 120.3 ≤ Time < 831.1 -0.06 4813.7–4770.3
Segment 3 831.1 ≤ Time 3.09 4770.3–5295.3

The slope of the longer second segment is almost zero for both sensor data. The
segment analysis can therefore be used.

(b) The step function fits of Sect. 2.8.2 required 9 segments for sensor X and 6
segments for sensor Z to describe the stable phase sufficiently. With the piecewise
linear fit, we require fewer segments.

(c) The piecewise linear fit can model a linear ramp-up phase like we see at
the beginning of both run charts better than a step function fit. It also allows us
identifying and estimating drifts in the run charts.



Chapter 3
Advanced Methods of Statistical Process Control

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import numpy as np
import pandas as pd
from scipy import stats
from scipy.special import factorial
import statsmodels.formula.api as smf
import mistat
import matplotlib.pyplot as plt

Exercise 3.1 Generate the distribution of the number of runs in a sample of size
𝑛 = 25, if the number of elements above the sample mean is 𝑚2 = 10:

(i) What are 𝑄1, 𝑀𝑒, and 𝑄3 of this distribution?
(ii) Compute the expected value, `𝑅, and the standard deviation 𝜎𝑅.

(iii) What is Pr{10 ≤ 𝑅 ≤ 16}?
(iv) Determine the normal approximation to Pr{10 ≤ 𝑅 ≤ 16}.

Solution 3.1 First define a function to calculate the probability of runs:

from scipy.special import binom
def probRuns(m1, m2, R):

n = m1 + m2
k = R // 2
if R % 2:

denom = binom(m1-1,k-1) * binom(m2-1,k) + binom(m1-1,k) * binom(m2-1,k-1)
return denom / binom(n, m2)

else:
return 2 * binom(m1-1, k-1) * binom(m2-1, k-1) / binom(n, m2)

For the case of 𝑛 = 25 and 𝑚2 = 10 calculate the distribution

n = 25
m2 = 10
m1 = n - m2

27

https://gedeck.github.io/mistat-code-solutions/IndustrialStatistics/
https://gedeck.github.io/mistat-code-solutions/IndustrialStatistics/
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df = pd.DataFrame({
'R': range(0, n+1),
'p.d.f': [probRuns(m1, m2, R) for R in range(0, n+1)],

})
df['c.d.f'] = np.cumsum(df['p.d.f'])

(a) We can determine the median and quantiles from the calculated c.d.f

cdf = df['c.d.f'].values

Q1 = np.where(cdf < 0.25)[0][-1]
Me = np.where(cdf < 0.5)[0][-1]
Q3 = np.where(cdf < 0.75)[0][-1]
print(Q1, Me, Q3)

10 12 14

𝑄1 = 10, 𝑀𝑒 = 12 and 𝑄3 = 14.
(b) From Eq. (9.1.3) and Eq. (9.1.4) we get `𝑅 = 13 and 𝜎𝑅 = 2.3452.

mu_R = 1 + 2 * m1 * m2 / n
sigma_R = np.sqrt(2*m1*m2*(2*m1*m2 - n) / (n*n*(n-1)))
print(mu_R, sigma_R)

13.0 2.345207879911715

(c) Pr{10 ≤ 𝑅 ≤ 16} = 0.8657.

p = df['c.d.f'][16] - df['c.d.f'][9]
print(p)

0.8656750572082381

(d) Using the normal approximation Pr{10 ≤ 𝑅 ≤ 16} ≈ 0.8644. Note that we
set the limits to [9.5, 16.5].

print(stats.norm.cdf((16.5-mu_R)/sigma_R) - stats.norm.cdf((9.5-mu_R)/sigma_R))

0.8644069987336978

Exercise 3.2 Use Python to perform a run test on the simulated cycle times from
the pistons, which are in dataset CYCLT.csv. Is the number of runs above the mean
cycle time significantly different than its expected value?

Solution 3.2 Load the data and determine number of runs information:

data = mistat.load_data('CYCLT')
# convert to up (1) or down (0) information relative to mean
mean_ct = np.mean(data)
runs = [1 if ct > mean_ct else 0 for ct in data]

# determine number of runs
obs_Runs = 0
current = None
for r in runs:
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if r != current:
obs_Runs += 1
current = r

print(f'Observed number of runs: {obs_Runs}')

# calculate expected number of runs
m1 = sum(data > mean_ct)
m2 = sum(data <= mean_ct)
n = m1 + m2
mu_R = 1 + 2 * m1 * m2 / n
print(f'Expected number of runs {mu_R:.2f}')

# determine if difference is significant
mistat.runsTest(data, cutoff=np.mean(data))

Observed number of runs: 26
Expected number of runs 25.64

Result(statistic=0.1044134517056721, pval=0.9168412481142088,
method='Runs Test', alternative='two.sided')

The test shows no significant deviations from randomness.

Exercise 3.3

(i) What is the expected number of runs up or down, in a sample of size 50?
(ii) Compute the number of runs up or down in the cycle time data (CYCLT.csv).

(iii) Is this number significantly different than expected?
(iv) What is the probability that a random sample of size 50 will have at least one

run of size greater or equal to 5?

Solution 3.3 (i) For 𝑛 = 50, 𝐸{𝑅∗} = 2𝑛−1
3 = 33.

n = 50
mu_Rstar = (2*n-1)/3
print(mu_Rstar)

33.0

(ii) Using the cycle time data, 𝑅∗ = 34.

# determine direction of change up (1) or down (-1)
y = [1 if xi < xip1 else -1 for xi, xip1 in zip(data[:-1], data[1:])]

# count number of up and down runs
up = 0
down = 0
current = None
for yi in y:

if yi == current: # no change of direction
continue

if yi < 0:
down += 1

else:
up += 1

current = yi
Rstar = up + down
print(Rstar, up, down)
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34 17 17

(iii) We have 𝜎∗ = 2.9269, 𝛼∗𝑢 = 1 − Φ

(
1

2.9269

)
= 0.3663. The deviation is not

significant.

n = 50
mu_Rstar = (2*n-1)/3
sigma_Rstar = np.sqrt((16*n-29)/90)
print(sigma_Rstar)
alpha_L = stats.norm.cdf((Rstar-mu_Rstar)/sigma_Rstar)
alpha_U = 1 - alpha_L
print(alpha_U, alpha_L)

2.9268868558020253
0.3663034098961011 0.6336965901038989

(iv) The probability that a sample of size 50 will have at least one run of length 5
or longer is 0.102.

def expected_R_k(n, k):
return 2 *(n*(k+1) - k*k - k + 1)/factorial(k+2)

print(expected_R_k(50, 5))
# probability to have run greater than 5
print(1 - np.exp(-expected_R_k(50, 5)))

0.10753968253968255
0.10195911479934461

The function mistat.runStatistics calculates a variety of statistics for runs.

mistat.runStatistics(data)

{'count': {'mu_R': 25.64, 'sigma_R': 3.4478316167038754, 'observed':
26},
'direction': {'mu_Rstar': 33.0,
'sigma_Rstar': 2.9268868558020253,
'up': 17,
'down': 17,
'Rstar': 34,
'alpha': [0.3663034098961011, 0.6336965901038989]}}

Exercise 3.4 Analyze the observations in YARNSTRG.csv for runs.

Solution 3.4 We make use of the mistat.runStatistics function.

data = mistat.load_data('YARNSTRG')
mistat.runStatistics(data)

{'count': {'mu_R': 50.92, 'sigma_R': 4.966642668235696, 'observed':
49},
'direction': {'mu_Rstar': 66.33333333333333,
'sigma_Rstar': 4.1779846284489315,
'up': 32,
'down': 32,
'Rstar': 64,
'alpha': [0.28825730949895256, 0.7117426905010474]}}
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mistat.runsTest(data, cutoff=data.mean())

Result(statistic=-0.3865790491189181, pval=0.6990678707195341,
method='Runs Test', alternative='two.sided')

Exercise 3.5 Run the piston simulator at the upper level of the seven control param-
eters and generate 50 samples of size 5. Analyze the output for runs in both �̄�- and
𝑆-charts.

Solution 3.5 Define the parameter settings and create 50 simulations with 5 replica-
tions each

parameter = pd.DataFrame({
'm': [60],
's': [0.02],
'k': [5_000],
't': [296],
'p0': [110_000],
'v0': [0.01],
't0': [360],

})
simulator = mistat.PistonSimulator(parameter=parameter, n_simulation=50, n_replicate=5, seed=1236)
# simulator = mistat.PistonSimulator(n_simulation=50, n_replicate=5, seed=1)
Ps = simulator.simulate()

# get grouped cycle times
cycleTime = mistat.qcc_groups(Ps['seconds'], Ps['group'])
mistat.runsTest(np.mean(cycleTime, axis=1), np.mean(cycleTime))

Result(statistic=-0.5610330087428953, pval=0.5747750350233831,
method='Runs Test', alternative='two.sided')

The test shows no significant runs. The resulting �̄� and 𝑆-charts are shown in
Fig. 3.1.

qcc = mistat.QualityControlChart(cycleTime, qcc_type='xbar')
ax = qcc.plot(title='for piston simulation at upper level')
plt.show()
qcc = mistat.QualityControlChart(cycleTime, qcc_type='S')
ax = qcc.plot(title='for piston simulation at upper level')
plt.show()

Exercise 3.6

(i) Run the piston simulator at the upper level of the seven control parameters and
generate 50 samples of size 5 (both �̄�- and 𝑆-charts).

(ii) Repeat the exercise allowing T to change over time (provide a list of 𝑇 which
specify the changing ambient temperatur over time).

(iii) Compare the results in (i) and (ii) with those of Exercise 3.3.

Solution 3.6 (i) See solution of Exercise 3.5 for this part of the exercise. Fig. 3.1
shows the resulting control charts.

(ii) In simulating the piston cycle times, the ambient temperature around the
piston is increased 10% per cycle after the shift point, which is after the 16th sample.
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Fig. 3.1: �̄� and 𝑆-chart of simulated Piston data (Exercises 3.5 and 3.6)
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parameter = pd.DataFrame({
'm': [60]*50,
's': [0.02]*50,
'k': [5_000]*50,
't': [296] * 16 + [296 * 1.1**i for i in range(1, 35)],
'p0': [110_000]*50,
'v0': [0.01]*50,
't0': [360]*50,

})

simulator = mistat.PistonSimulator(parameter=parameter, n_simulation=50,
n_replicate=5, seed=1, check=False)

Ps = simulator.simulate()
cycleTimeTshift = mistat.qcc_groups(Ps['seconds'], Ps['group'])

qcc = mistat.QualityControlChart(cycleTimeTshift, qcc_type='xbar')
ax = qcc.plot(title='for contact lens data')
plt.show()
qcc = mistat.QualityControlChart(cycleTimeTshift, qcc_type='S')
ax = qcc.plot(title='for contact lens data')
plt.show()

The control charts for this simulation are shown in Fig. 3.2. Both show clearly
unrandom behavior.

(iii) We calculate runs statistics for both simulations.

mistat.runStatistics(np.mean(cycleTime, axis=1))

{'count': {'mu_R': 25.96, 'sigma_R': 3.493555583105112, 'observed':
24},
'direction': {'mu_Rstar': 33.0,
'sigma_Rstar': 2.9268868558020253,
'up': 16,
'down': 16,
'Rstar': 32,
'alpha': [0.36630340989610105, 0.6336965901038989]}}

mistat.runStatistics(np.mean(cycleTimeTshift, axis=1))

{'count': {'mu_R': 25.96, 'sigma_R': 3.493555583105112, 'observed':
8},
'direction': {'mu_Rstar': 33.0,
'sigma_Rstar': 2.9268868558020253,
'up': 15,
'down': 14,
'Rstar': 29,
'alpha': [0.08586912144778469, 0.9141308785522153]}}

The number of runs in the first simulation is within the expected range. For the
second simulation we observe a much smaller number of runs. The statistics for the
direction of runs, shows no strong deviation from expected values.

mistat.runStatistics(np.mean(cycleTime, axis=1))
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Fig. 3.2: �̄� and 𝑆-chart of simulated Piston data (Exercise 3.6)
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{'count': {'mu_R': 25.96, 'sigma_R': 3.493555583105112, 'observed':
24},
'direction': {'mu_Rstar': 33.0,
'sigma_Rstar': 2.9268868558020253,
'up': 16,
'down': 16,
'Rstar': 32,
'alpha': [0.36630340989610105, 0.6336965901038989]}}

mistat.runStatistics(np.mean(cycleTimeTshift, axis=1))

{'count': {'mu_R': 25.96, 'sigma_R': 3.493555583105112, 'observed':
8},
'direction': {'mu_Rstar': 33.0,
'sigma_Rstar': 2.9268868558020253,
'up': 15,
'down': 14,
'Rstar': 29,
'alpha': [0.08586912144778469, 0.9141308785522153]}}

We can also perform runs tests for both simulations. For the first simulation we
get:

print('mean:', mistat.runsTest(np.mean(cycleTime, axis=1), np.mean(cycleTime)).pval)
STD = np.std(cycleTime, axis=1)
print('std:', mistat.runsTest(STD, np.mean(STD)).pval)

mean: 0.5747750350233831
std: 0.2529990614746843

This confirms our observation that the simulation shows no non-random behavior.
For the second simulation we get:

print('mean:', mistat.runsTest(np.mean(cycleTimeTshift, axis=1), np.mean(cycleTimeTshift)).pval)
STD = np.std(cycleTimeTshift, axis=1)
print('std:', mistat.runsTest(STD, np.mean(STD)).pval)

mean: 2.7343384749349e-07
std: 0.09297787599834818

The run tests reflect the nonrandomness of the sequence, after the change-point.

Exercise 3.7 Construct a 𝑝-chart for the fraction of defective substrates received at
a particular point in the production line. One thousand (𝑛 = 1000) substrates are
sampled each week. Remove data for any week for which the process is not in control.
Be sure to check for runs as well as points outside the control limits. Construct the
revised 𝑝-chart and be sure to check for runs again. The data are in Table 3.1.

Solution 3.7 Construct the 𝑛𝑝-chart of the data using mistat.QualityControlChart.
It is shown in Fig. 3.3.

data = pd.Series([18, 14, 9, 25, 27, 18, 21, 16, 18, 24, 20, 19, 22, 22, 20,
38, 29, 35, 24, 20, 23, 17, 20, 19, 17, 16, 10, 8, 10, 9])

qcc = mistat.QualityControlChart(data, qcc_type='np', sizes=1000)
ax = qcc.plot(title='for defects')
plt.show()
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Table 3.1: Dataset for Exercise 3.7

Week No. Def. Week No. Def.

1 18 16 38
2 14 17 29
3 9 18 35
4 25 19 24
5 27 20 20
6 18 21 23
7 21 22 17
8 16 23 20
9 18 24 19

10 24 25 17
11 20 26 16
12 19 27 10
13 22 28 8
14 22 29 10
15 20 30 9
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Fig. 3.3: 𝑛𝑝-Chart for defective substrates
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Fig. 3.4: Revised 𝑛𝑝-chart for defective substrates

As we see, the data points of week 16 and 18 fall outside the upper control limit.
Also, the last 8 weeks show a significant trend down (improvement).

After removing the data points for week 16 and 18 (note that Python arrays are
0-indexed), we get a revised 𝑛𝑝-chart (Fig. 3.4). The points are now all in control,
but the pattern of the last 8 weeks remains.

revised = data[data < 32.751]

qcc = mistat.QualityControlChart(revised, qcc_type='np', sizes=1000)
ax = qcc.plot(title='for number of defects')
plt.show()

Exercise 3.8 Substrates were inspected for defects on a weekly basis, on two different
production lines. The weekly sample sizes and the number of defectives are indicated
below in the dataset in Table 3.2. Plot the data and indicate which of the lines is
not in a state of statistical control. On what basis do you make your decision? Use
Python to construct control charts for the two production lines.

Note: When the sample size is not the same for each sampling period, we use
variable control limits. If 𝑋 (𝑖) and 𝑛(𝑖) represent the number of defects and sample
size, respectively, for sampling period 𝑖, then the upper and lower control limits for
the 𝑖th period are

𝑈𝐶𝐿𝑖 = 𝑝 + 3(𝑝(1 − 𝑝)/𝑛𝑖)1/2

and
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𝐿𝐶𝐿𝑖 = 𝑝 − 3(𝑝(1 − 𝑝)/𝑛𝑖)1/2

where
𝑝 =

∑︁
𝑋 (𝑖)/

∑︁
𝑛(𝑖)

is the center line for the control chart.

Table 3.2: Dataset for Exercise 3.8

Line 1 Line 2
Week 𝑋𝑖 𝑛𝑖 𝑋𝑖 𝑛𝑖

1 45 7920 135 2640
2 72 6660 142 2160
3 25 6480 16 240
4 25 4500 5 120
5 33 5840 150 2760
6 35 7020 156 2640
7 42 6840 140 2760
8 35 8460 160 2980
9 50 7020 195 2880

10 55 9900 132 2160
11 26 9180 76 1560
12 22 7200 85 1680

Solution 3.8 The average proportion of defectives for line 1 is 𝑝1 = 0.005343, while
that for line 2 is 𝑝2 = 0.056631. The difference is very significant. Indeed,

𝑍 =
𝑝2 − 𝑝1√︃

�̂�1 (1− �̂�1 )
𝑁1

+ �̂�2 (1− �̂�2 )
𝑁2

= 34.31,

where 𝑁1 =
∑12

𝑖=1 𝑛1 (𝑖) and 𝑁2 =
∑12

𝑖=1 𝑛2 (𝑖).
In Fig. 3.5, we present the 𝑝-charts for these two production lines. We see that the

chart for line 1 reveals that the process was at the beginning (point 2), out of control.

data = pd.DataFrame([
[1, 45, 7920, 135, 2640],
[2, 72, 6660, 142, 2160],
[3, 25, 6480, 16, 240],
[4, 25, 4500, 5, 120],
[5, 33, 5840, 150, 2760],
[6, 35, 7020, 156, 2640],
[7, 42, 6840, 140, 2760],
[8, 35, 8460, 160, 2980],
[9, 50, 7020, 195, 2880],
[10,55, 9900, 132, 2160],
[11,26, 9180, 76, 1560],
[12,22, 7200, 85, 1680]],
columns=['Week', 'Line 1 X', 'Line 1 n', 'Line 2 X', 'Line 2 n']

)

qcc = mistat.QualityControlChart(data['Line 1 X'], qcc_type='p', sizes=data['Line 1 n'])
ax = qcc.plot(title='for line 1 defects')
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Fig. 3.5: 𝑝-charts for production line defects (Exercise 3.8)

plt.show()

qcc = mistat.QualityControlChart(data['Line 2 X'], qcc_type='p', sizes=data['Line 2 n'])
ax = qcc.plot(title='for line 2 defects')
plt.show()
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Exercise 3.9 In designing a control chart for the fraction defectives 𝑝, a random
sample of size 𝑛 is drawn from the productions of each day (very large lot). How
large should 𝑛 be so that the probability of detecting a shift from 𝑝0 = 0.01 to
𝑝𝑡 = 0.05, within a 5-day period, will not be smaller than 0.8?

Solution 3.9 Let \ be the probability of not detecting the shift in a given day. Solving
\5 = 0.2 we get \ = 0.72478. We find the smallest 𝑛 for which

\ ≥ Φ
©«

0.01 + 3
√︃

0.01×0.99
𝑛

− 0.05√︃
0.05×0.95

𝑛

ª®®¬ −Φ
©«

0.01 − 3
√︃

0.01×0.99
𝑛

− 0.05√︃
0.05×0.95

𝑛

ª®®¬ .
The solution is 𝑛 = 16. Using Eq. (3.3.7) we get 𝑛 ≈ 18. This solution and the one
shown above both use the normal approximation to the binomial. Another approach,
which may be preferable for small sample sizes, is to use binomial distribution
directly. We find the smallest 𝑛 for which

𝐵(𝑛×0.01+3
√
𝑛 × 0.01 × 0.99; 𝑛, 0.05)−𝐵(𝑛×0.01−3

√
𝑛 × 0.01 × 0.99; 𝑛, 0.05) ≤ \.

In this case the solution is 𝑛 = 7.

Exercise 3.10 The data in Table 3.3 represent dock-to-stock cycle times for a certain
type of shipment (class 𝐷). Incoming shipments are classified according to their
“type,” which is determined by the size of the item and the shipment, the type of
handling required, and the destination of the shipment. Samples of five shipments
per day are tracked from their initial arrival to their final destination, and the time it
takes for this cycle to be complete is noted. The samples are selected as follows: at
five preselected times during the day, the next class 𝐷 shipment to arrive is tagged,
and the arrival time and identity of the shipment are recorded. When the shipment
reaches its final destination, the time is again recorded. The difference between these
times is the cycle time. The cycle time is always recorded for the day of arrival:

(i) Construct �̄� and 𝑆-charts from the data. Are any points out of control? Are there
any trends in the data? If there are points beyond the control limits, assume that
we can determine special causes for the points, and recalculate the control limits,
excluding those points that are outside the control limits.

(ii) Use a 𝑡-test to decide whether the mean cycle time for days 21 and 22 was
significantly greater than 45.

(iii) Make some conjectures about possible causes of unusually long cycle times.
Can you think of other appropriate data that might have been collected, such as
the times at which the shipments reached intermediate points in the cycle? Why
would such data be useful?

Solution 3.10 (i) In Fig. 3.6, we see the �̄� and 𝑆 control charts. Points for days 21
and 22 are outside the UCL for �̄� . Excluding these points, the recalculated control
chart limits for �̄� are LCL = 29.731 and UCL = 45.781. Also, ¯̄𝑋 = 37.757.
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Table 3.3: Dock to Stock Cycle Times

Day Times
1 27 43 49 32 36
2 34 29 34 31 41
3 36 32 48 35 33
4 31 41 51 51 34
5 43 35 30 32 31
6 28 42 35 40 37
7 38 37 41 34 44
8 28 44 44 34 50
9 44 36 38 44 35

10 30 43 37 29 32
11 36 40 50 37 43
12 35 36 44 34 32
13 48 49 44 27 32
14 45 46 40 35 33
15 38 36 43 38 34
16 42 37 40 42 42
17 44 31 36 42 39
18 32 28 42 39 27
19 41 41 35 41 44
20 44 34 39 30 37
21 51 43 36 50 54
22 52 50 50 44 49
23 52 34 38 41 37
24 40 41 40 23 30
25 34 38 39 35 33

cycleTime = pd.DataFrame([
[1, 27, 43, 49, 32, 36], [2, 34, 29, 34, 31, 41],
[3, 36, 32, 48, 35, 33], [4, 31, 41, 51, 51, 34],
[5, 43, 35, 30, 32, 31], [6, 28, 42, 35, 40, 37],
[7, 38, 37, 41, 34, 44], [8, 28, 44, 44, 34, 50],
[9, 44, 36, 38, 44, 35], [10, 30, 43, 37, 29, 32],
[11, 36, 40, 50, 37, 43], [12, 35, 36, 44, 34, 32],
[13, 48, 49, 44, 27, 32], [14, 45, 46, 40, 35, 33],
[15, 38, 36, 43, 38, 34], [16, 42, 37, 40, 42, 42],
[17, 44, 31, 36, 42, 39], [18, 32, 28, 42, 39, 27],
[19, 41, 41, 35, 41, 44], [20, 44, 34, 39, 30, 37],
[21, 51, 43, 36, 50, 54], [22, 52, 50, 50, 44, 49],
[23, 52, 34, 38, 41, 37], [24, 40, 41, 40, 23, 30],
[25, 34, 38, 39, 35, 33]],
columns=['Week', 'S1', 'S2', 'S3', 'S4', 'S5'])

cycleTime = cycleTime.set_index('Week')

qcc = mistat.QualityControlChart(cycleTime, qcc_type='xbar')
ax = qcc.plot(title='for dock-to-stock cycle times')
plt.show()

qcc = mistat.QualityControlChart(cycleTime, qcc_type='S')
ax = qcc.plot(title='for dock-to-stock cycle times')
plt.show()

# exclude points for week 21 and 22
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qcc = mistat.QualityControlChart(cycleTime.drop(labels=[21, 22]), qcc_type='xbar')
qcc.center, qcc.limits

(37.756521739130434,
LCL UCL

0 29.731454 45.781589)

(ii) We can calculate the significance of the day 21 and 22 cycle times relative to
the UCL of the recalculated control chart.

statistic, pvalue = stats.ttest_1samp(cycleTime.loc[21,], 45.781, alternative='greater')
print(pvalue)
statistic, pvalue = stats.ttest_1samp(cycleTime.loc[22,], 45.781, alternative='greater')
print(pvalue)

0.3846525285951686
0.03720636409199298

We find that only �̄�22 is significantly larger than 45.781.
(iii) Unusual long cycle times can be due to

1. Missing or misplaced information in accompanying paperwork
2. Missing or misplaced marks on package
3. Defective package
4. Non standard package
5. Wrong information on package destination
6. Overloaded stock room so that packages cannot be accepted
7. Misplaced packages.

Additional data that can be collected to explain long cycle times:

1. Package destination
2. Stock room
3. Package size
4. Package weight
5. Package origin (country, supplier)
6. Package courier.

Exercise 3.11 Consider the modified Shewhart control chart for sample means, with
𝑎 = 3, 𝑤 = 2, and 𝑟 = 4. What is the ARL of this procedure when 𝛿 = 0, 1, 2, and
the sample size is 𝑛 = 10?

Solution 3.11 The ARL of the modified Shewhart control chart with 𝑎 = 3, 𝑤 = 2
and 𝑟 = 4 when 𝑛 = 10 and 𝛿 = 0 is 370.3. When 𝛿 = 1, the ARL is 1.75 and when
𝛿 = 2 the ARL is 1.0.

Use the function mistat.ARL modifiedShewhartControlChart:

print(mistat.ARL_modifiedShewhartControlChart(a=3, w=2, r=4, n=10, delta=0))
print(mistat.ARL_modifiedShewhartControlChart(a=3, w=2, r=4, n=10, delta=1))
print(mistat.ARL_modifiedShewhartControlChart(a=3, w=2, r=4, n=10, delta=2))
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Fig. 3.6: Xbar and S-chart of dock to stock cycle times (Exercise 3.10)



44 3 Advanced Methods of Statistical Process Control

370.3420378893707
1.7509678324381477
1.000442994467068

Exercise 3.12 Repeat the previous exercise for 𝑎 = 3, 𝑤 = 1, 𝑟 = 15, when 𝑛 = 5
and 𝛿 = 0.5.

Solution 3.12 For 𝑎 = 3, 𝑤 = 1 and 𝑟 = 15 when 𝑛 = 5 and 𝛿 = 0.5 the ARL is 33.4.

print(mistat.ARL_modifiedShewhartControlChart(a=3, w=1, r=15, delta=0.5, n=5))

33.3736035579561

Exercise 3.13 Write a Python application to simulate ARL and compare the results
from the simulation to Exercises 3.11 and 3.12.

Solution 3.13 A possible solution is:

def ARLsimulation(a, w, r, delta, n, sigma=1, nrepeat=1_000):
# standard deviation of means of n samples
sigma_n = sigma / np.sqrt(n)
# distribution of means from n samples; process shifted by delta*sigma
distribution = stats.norm(scale=sigma_n, loc=delta*sigma)

limit_a = a * sigma_n
limit_w = w * sigma_n

observed_runs = []
for _ in range(nrepeat):

measurements = distribution.rvs(10_000)
run = 1
warnings = -1
for measurement in measurements:

if abs(measurement) >= limit_a:
break

if abs(measurement) >= limit_w:
if warnings == -1:

warnings = 0
else:

warnings += 1
else:

if warnings != -1:
warnings = 0

if warnings >= r:
break

run += 1
observed_runs.append(run)

return np.mean(observed_runs)

Using the function, we can repeat the previous exercises:

print(ARLsimulation(3, 2, 4, 0, 10),
mistat.ARL_modifiedShewhartControlChart(a=3, w=2, r=4, delta=0, n=10))

print(ARLsimulation(3, 2, 4, 1, 10),
mistat.ARL_modifiedShewhartControlChart(a=3, w=2, r=4, delta=1, n=10))

print(ARLsimulation(3, 2, 4, 2, 10),
mistat.ARL_modifiedShewhartControlChart(a=3, w=2, r=4, delta=2, n=10))
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370.582 370.3420378893707
1.761 1.7509678324381477
1.0 1.000442994467068

print(ARLsimulation(3, 1, 15, 0.5, 5),
mistat.ARL_modifiedShewhartControlChart(a=3, w=1, r=15, delta=0.5, n=5))

36.106 33.3736035579561

The results of the simulation are close to the values from the previous exercise.

Exercise 3.14 Suppose that a shift in the mean is occurring at random, according
to an exponential distribution with mean of 1 hour. The hourly cost is $100 per
shift of size 𝛿 =

`1−`0
𝜎

. The cost of sampling and testing is 𝑑 = $10 per item. How
often should samples of size 𝑛 = 5 be taken, when shifts of size 𝛿 ≥ 1.5 should be
detected?

Solution 3.14 Samples should be taken every ℎ0 = 34 [min] = 0.57 [hr].

def h0(delta, d, c, lambda_, n):
A = np.sqrt((1 + d*n) / (c*lambda_))
B = np.sqrt(1 - stats.norm.cdf(3 - delta*np.sqrt(n)))
return A * B

print(h0(1.5, 10, 100, 1, 5), h0(1.5, 10, 100, 1, 5) * 60)

0.5705857258216187 34.23514354929712

Exercise 3.15 Compute the 𝑂𝐶 (𝑝) function, for a Shewhart 3-sigma control chart
for 𝑝, based on samples of size 𝑛 = 20, when 𝑝0 = 0.10. [Use the formula for exact
computations.]

Solution 3.15 With 𝑛 = 20 and 𝑝0 = 0.10,

𝑂𝐶 (𝑝) = 𝐵(𝑛𝑝0 + 3
√︁
𝑛𝑝0 (1 − 𝑝0); 𝑛, 𝑝) − 𝐵(𝑛𝑝0 − 3

√︁
𝑛𝑝0 (1 − 𝑝0); 𝑛, 𝑝).

we get the following table of values of 𝑂𝐶 (𝑝), for 𝑝 = 0.05, 0.5 (0.05).

𝑝 𝑂𝐶 (𝑝)
0.05 0.999966
0.10 0.997614
0.15 0.978065
0.20 0.913307
0.25 0.785782
0.30 0.608010
0.35 0.416625
0.40 0.250011
0.45 0.129934
0.50 0.057659
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Exercise 3.16 How large should the sample size 𝑛 be, for a 3-sigma control chart for
𝑝, if we wish that the probability of detecting a shift from 𝑝0 = 0.01 to 𝑝𝑡 = 0.05 be
1 − 𝛽 = 0.90?

Solution 3.16 The sample size 𝑛0 is the smallest 𝑛 for which

𝐵(𝑛 × 0.01 + 0.2985
√
𝑛; 𝑛, 0.05) − 𝐵(𝑛 × 0.01 − 0.2985

√
𝑛; 𝑛, 0.05) ≤ 0.1.

From this we obtain 𝑛0 = 184.

n = 1
while OC_p_chart(0.05, n, 0.01) > 0.1:

n += 1
n

184

Using Eq. (3.3.5), which is based on the normal approximation to the binomial,
gives 𝑛0 ≈ 209.

# normal approximation
def OC_p_chart_normal(p, n, p0):

loc = n * p
scale = np.sqrt(n*p*(1-p))
c = n * p0
delta = 3 * np.sqrt(n * p0 * (1 - p0))
return (stats.norm(loc, scale).cdf(c + delta) -

stats.norm(loc, scale).cdf(c - delta))

# alternative implementation
def OC_p_chart_normal_2(p, n, p0):

delta = 3 * np.sqrt(p0 * (1 - p0) / n)
UCL = p0 + delta
LCL = p0 - delta
denom = np.sqrt(p * (1 - p) / n)
return (stats.norm().cdf((UCL - p)/denom) -

stats.norm().cdf((LCL - p)/denom))

n = 1
while OC_p_chart_normal(0.05, n, 0.01) > 0.1:

n += 1
print(n, OC_p_chart_normal(0.05, n, 0.01))

209 0.09959381959080052

Exercise 3.17 Suppose that a measurement 𝑋 , of hardness of brackets after heat
treatment, has a normal distribution. Every hour a sample of 𝑛 units is drawn and
a �̄�-chart with control limits `0 ± 3𝜎/

√
𝑛 is used. Here, `0 and 𝜎 are the assumed

process mean and standard deviation. The 𝑂𝐶 function is

𝑂𝐶 (𝛿) = Φ(3 − 𝛿
√
𝑛) +Φ(3 + 𝛿

√
𝑛) − 1

where 𝛿 = (` − `0)/𝜎 is the standardized deviation of the true process mean from
the assumed one:
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(i) How many hours, on the average, would it take to detect a shift in the process
mean of size 𝛿 = 1, when 𝑛 = 5?

(ii) What should be the smallest sample size, 𝑛, so that a shift in the mean of size
𝛿 = 1 would be on the average detected in less than 3 hours?

(iii) One has two options: to sample 𝑛1 = 5 elements every hour or to sample 𝑛2 = 10
elements every 2 hours. Which one would you choose? State your criterion for
choosing between the two options and make the necessary computations.

Solution 3.17 (i) 4.5 [hr]; (ii) 7; (iii) For a shift of size 𝛿 = 1, option 1 detects it on
the average after 4.5 [hr]. Option 2 detects it on the average after 2× 1.77 = 3.5 [hr].
Option 2 is preferred from the point of view of detection speed.

Exercise 3.18 Electric circuits are designed to have an output of 220 (volts, DC).
If the mean output is above 222 (volts DC), you wish to detect such a shift as soon
as possible. Examine the sample of dataset OELECT.csv for such a shift. For this
purpose, construct a CUSUM upward scheme with 𝐾+ and ℎ+ properly designed
(consider for ℎ+ the value 𝛼 = 0.001). Each observation is of sample of size 𝑛 = 1.
Is there an indication of a shift in the mean?

Solution 3.18 In Python:

data = mistat.load_data('OELECT')
theta_0 = 220
theta_1 = 222
alpha = 0.001
sigma = data.std()
n = 1

K_p = 0.5 * (theta_0 + theta_1)
h_p = -sigma**2 * np.log(alpha) / (n * (theta_1 - theta_0))
print(f'K+: {K_p:.0f}; h+: {h_p:.3f}')

K+: 221; h+: 55.372

Here 𝐾+ = 221 and ℎ+ = 55.3724. Fig. 3.7 shows the “up” and “down” CUSUM
charts. We see that the upper or lower limits are not crossed. There is no signal of
change.

data = mistat.load_data('OELECT')
analysis = mistat.Cusum(data, center=K_p, decision_interval=h_p)
analysis.plot()
plt.show()

Exercise 3.19 Estimate the probability of false alarm and the conditional expected
delay in the Poisson case, with a CUSUM scheme. The parameters are _0 = 15,
_+1 = 25 and _−1 = 7. Use 𝛼 = 0.001, 𝜏 = 30.

Solution 3.19 Using 𝐾+ = 19.576, ℎ+ = 13.523, 𝐾− = 10.497 and ℎ− = −9.064 we
obtained 𝑃𝐹𝐴 = 0.014 and 𝐶𝐸𝐷 = 3.01± 0.235. Here the value of _ changed from
15 to 25.
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Fig. 3.7: CUSUM chart for dataset OELECT.csv

lambda0 = 15
lambda1_p = 25
lambda1_m = 7
alpha = 0.001
tau = 30

kp = (lambda1_p - lambda0) / np.log(lambda1_p/lambda0)
hp = - np.log(alpha) / np.log(lambda1_p/lambda0)
km = (lambda1_m - lambda0) / np.log(lambda1_m/lambda0)
hm = - np.log(alpha) / np.log(lambda1_m/lambda0)

print(f'Kp={kp:.3f}, hp={hp:.3f}')
print(f'Km={km:.3f}, hm={hm:.3f}')

arl = mistat.cusumPfaCed(randFunc1=stats.poisson(mu=15),
randFunc2=stats.poisson(mu=25),
tau=tau,
kp=kp, km=km,
hp=hp, hm=hm,
N=4000, limit=1000, seed=1)

result = arl['statistic']

Kp=19.576, hp=13.523
Km=10.497, hm=-9.064
PFA 0.01075 CED 2.1663 Std. Error 0.51072

Exercise 3.20 A CUSUM control scheme is based on sample means:

(i) Determine the control parameters 𝐾+, ℎ+, 𝐾− , ℎ− , when `0 = 100, `+1 = 110,
`−1 = 90, 𝜎 = 20, 𝑛 = 5, 𝛼 = 0.001.
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(ii) Estimate the PFA and CED, when the change-point is at 𝜏 = 10, 20, 30.
(iii) How would the properties of the CUSUM change if each sample size is increased

from 5 to 20.

Solution 3.20 (i) Determine the control parameters:

mu0 = 100
mu1p = 110
mu1m = 90
sigma = 20
n = 5
alpha = 0.001

Kp = (mu0+mu1p)/2
hp = -(sigma**2 / n) * np.log(alpha) / (mu1p-mu0)
Km = (mu0+mu1m)/2
hm = -(sigma**2 / n) * np.log(alpha) / (mu1m-mu0)

pd.Series({'Kp': Kp, 'hp': hp, 'Km': Km, 'hm': hm})

Kp 105.000000
hp 55.262042
Km 95.000000
hm -55.262042
dtype: float64

(ii) Estimate PFA and CED for 𝜏 = 10, 20, 30.

results = []
for tau in [10, 20, 30]:

arl = mistat.cusumPfaCed(randFunc1=stats.norm(loc=mu0, scale=sigma/np.sqrt(5)),
randFunc2=stats.norm(loc=mu1p, scale=sigma/np.sqrt(5)),
tau=tau, kp=Kp, km=Km, hp=hp, hm=hm,
N=300, limit=1000, seed=1, verbose=False)

results.append({
'tau': tau,

**arl['statistic'], # copy all results from arl['statistic']
})

pd.DataFrame(results)

tau PFA CED Std. Error
0 10 0.000000 10.090000 1.050516
1 20 0.003333 10.076923 1.671984
2 30 0.006667 10.449664 2.289643

(iii) Increase 𝑛 to 20 and estimate PFA and CED for 𝜏 = 10, 20, 30.

n = 20
hp = -(sigma**2 / n) * np.log(alpha) / (mu1p-mu0)
hm = -(sigma**2 / n) * np.log(alpha) / (mu1m-mu0)

results = []
for tau in [10, 20, 30]:

arl = mistat.cusumPfaCed(randFunc1=stats.norm(loc=mu0, scale=sigma/np.sqrt(5)),
randFunc2=stats.norm(loc=mu1p, scale=sigma/np.sqrt(5)),
tau=tau, kp=Kp, km=Km, hp=hp, hm=hm,
N=300, limit=1000, seed=1, verbose=False)

results.append({
'tau': tau,

**arl['statistic'], # copy all results from arl['statistic']
})

pd.DataFrame(results)
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tau PFA CED Std. Error
0 10 0.586667 1.709677 1.056345
1 20 0.806667 2.172414 2.910490
2 30 0.920000 2.250000 6.583663

The probability of a false alarm increases considerably.

Exercise 3.21 Show that the Shiryaev-Roberts statistic𝑊𝑛, for detecting a shift in a
Poisson distribution from a mean _0 to a mean _1 = _0 + 𝛿, is

𝑊𝑚 = (1 +𝑊𝑚−1)𝑅𝑚

where𝑊0 ≡ 0, 𝑅𝑚 = exp{−𝛿 + 𝑥𝑚 log(𝜌)}, and 𝜌 = _1/_0.

Solution 3.21 According to Eq. (3.5.6), in the Poisson case,

𝑊𝑚 =

𝑚−1∑︁
𝑖=1

𝑚∏
𝑗=𝑖+1

𝑅 𝑗

=

𝑚−1∑︁
𝑖=1

exp
−(𝑚 − 𝑖)𝛿 +

𝑚∑︁
𝑗=𝑖+1

𝑋 𝑗 log(𝜌)


= 𝑒−𝛿+𝑋𝑚 log 𝜌 +
𝑚−2∑︁
𝑖=1

exp
−(𝑚 − 𝑖)𝛿 +

𝑚∑︁
𝑗=𝑖+1

𝑋 𝑗 log(𝜌)


= 𝑒−𝛿+𝑋𝑚 log 𝜌 + 𝑒−𝛿+𝑋𝑚 log 𝜌
𝑚−2∑︁
𝑖=1

exp
−(𝑚 − 1 − 𝑖)𝛿 +

𝑚−1∑︁
𝑗=𝑖+1

𝑋 𝑗 log(𝜌)


= (1 +𝑊𝑚−1)𝑒−𝛿+𝑋𝑚 log 𝜌

= (1 +𝑊𝑚−1)𝑅𝑚.

Exercise 3.22 Analyze the data in data OELECT, with an EWMA control chart
with _ = 0.2.

Solution 3.22 The mean of the data is �̄� = 219.25, and its standard deviation is
𝑆 = 4.004.

data = mistat.load_data('OELECT')
ewma = mistat.EWMA(data, center=data.mean(), std_dev=data.std(),

sizes=1, smooth=0.2, nsigmas=3)
ewma.plot()
plt.show()

Fig. 3.8 shows that there is no significant shift in the data.

Exercise 3.23 Analyze the variable diameters in the dataset ALMPIN with an
EWMA control chart with _ = 0.2. Explain how you would apply the automatic
process control technique described at the end of Sect. 3.7.
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Fig. 3.8: EWMA chart for the OELECT dataset

Solution 3.23 In Fig. 3.9, we see the EWMA control chart for Diameter 1. The mean
and standard deviation are �̄� = 9.993 and 𝑆 = 0.0164. The target value for Diameter
1 is 10 mm. Notice in the chart that after a drop below 9.98 mm the machine corrects
itself automatically, and there is a significant run upwards towards the target value.
Using the EWMA chart an automatic control can be based on Eq. 9.8.11.

data = mistat.load_data('ALMPIN')
data = data['diam1']
ewma = mistat.EWMA(data, center=data.mean(), std_dev=data.std(),

sizes=1, smooth=0.2, nsigmas=3)
ax = ewma.plot()
ax.set_ylim(9.96, 10.02)
plt.show()

Exercise 3.24 Construct the Kalman filter for the Dow-Jones daily index, which is
given in the dataset DOW1941.

Solution 3.24 Using the first 50 values of DOW1941 perform the regression method
outlined in the text,

dow1941 = mistat.load_data('DOW1941')
# solve the regression equation
m = 50
sqrt_t = np.sqrt(range(1, m + 1))
df = pd.DataFrame({

'Ut': dow1941[:m]/sqrt_t,
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Fig. 3.9: EWMA chart for the Diameter 1

'x1t': 1 / sqrt_t,
'x2t': sqrt_t,

})
model = smf.ols(formula='Ut ˜ x1t + x2t - 1', data=df).fit()
mu0, delta = model.params
var_eta = np.var(model.resid, ddof=2)
pd.Series({'mu0': mu0, 'delta': delta, 'Var(eta)': var_eta})

mu0 132.808555
delta -0.255630
Var(eta) 0.297616
dtype: float64

The least squares estimates of the initial parameter values are ˆ̀0 = 132.809,
𝛿 = −0.2556 and �̂�2

𝜖 + �̂�2
2 = 0.297616.

For the Kalman filter, we choose �̂�2
𝜖 = 0.15 and for 𝑤2

0 the value 0.0015. The
Python commands used to obtain the Kalman filter estimates of the DOW1941 data
are as follows:

# choose sig2e and w20
sig2e = 0.15
w20 = 0.0015
# apply the filter
results = []
mu_tm1 = mu0
w2_tm1 = w20
y_tm1 = mu0
for i in range(0, len(dow1941)):

y_t = dow1941[i]
B_t = sig2e / (var_eta + w2_tm1)
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mu_t = B_t * (mu_tm1 + delta) + (1 - B_t) * y_t # X
results.append({

't': i + 1,
'y_t': y_t,
'mu_t': mu_t,
'B_t': B_t,
'W2_t': w2_tm1,

})
w2_tm1 = B_t * (var_eta - sig2e + w2_tm1)
mu_tm1 = mu_t
y_tm1 = y_t

results = pd.DataFrame(results)

The Table 3.4 shows the first 25 values of the DOW 1941 data as well as the
values of 𝐵𝑡 , 𝑤2

𝑡 , and ˆ̀𝑡 . Starting with 𝑤2
0 = 0.0015 we see that 𝑤2

𝑡 converges fast
to 0.0923. The values of ˆ̀𝑡 are very close to the data values. The result is shown
graphically in Table 3.4 with actual values of 𝑌𝑡 in grey and estimated ˆ̀𝑡 in black.
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Table 3.4: Results for Kalman filter applied to the Dow-Jones daily 1941 dataset

Dow 1941 ˆ̀𝑡 𝐵𝑡 𝑤2
𝑡

0 131.1300 131.8436 0.5015 0.0015
1 130.5700 130.9800 0.4028 0.0748
2 132.0100 131.5120 0.3874 0.0896
3 132.4000 131.9596 0.3851 0.0919
4 132.8300 132.3967 0.3848 0.0922
5 133.0200 132.6819 0.3847 0.0923
6 133.0200 132.7916 0.3847 0.0923
7 133.3900 133.0614 0.3847 0.0923
8 133.5900 133.2883 0.3847 0.0923
9 133.4900 133.3141 0.3847 0.0923
10 133.2500 133.1763 0.3847 0.0923
11 132.4400 132.6249 0.3847 0.0923
12 131.5100 131.8406 0.3847 0.0923
13 129.9300 130.5667 0.3847 0.0923
14 129.5400 129.8366 0.3847 0.0923
15 129.7500 129.6850 0.3847 0.0923
16 129.2400 129.3128 0.3847 0.0923
17 128.2000 128.5298 0.3847 0.0923
18 128.6500 128.5054 0.3847 0.0923
19 128.3400 128.3053 0.3847 0.0923
20 128.5200 128.3391 0.3847 0.0923
21 128.9600 128.6228 0.3847 0.0923
22 129.0300 128.7750 0.3847 0.0923
23 128.6000 128.5690 0.3847 0.0923
24 126.0000 126.8900 0.3847 0.0923
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Chapter 4
Multivariate Statistical Process Control

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns

import mistat

Exercise 4.1 In dataset TSQ we find 368 𝑇2 values corresponding to the vectors
(𝑥, 𝑦, \) in the PLACE dataset. The first 𝑛 = 48 vectors in PLACE dataset were
used as a base sample, to compute the vector of means m and the covariance matrix
𝑆. The 𝑇2 values are for the other individual vectors (𝑚 = 1). Plot the 𝑇2 values in
the dataset TSQ.csv. Compute the UCL and describe from the plot what might have
happened in the placement process generating the (𝑥, 𝑦, \) values.

Solution 4.1 The values of 𝑇2 were computed, with m being the mean of the first 48
vectors. Fig. ?? shows the 𝑇2 values for all boards with the calculated control limit
of UCL = 17.1953.

# use eqn 4.1.6 to calculate the upper control limit for monitoring
n = 48; p = 3
UCL = (n-1)*(n+1)*p/(n*(n-p)) * stats.f(p, n-p).ppf(0.997)

tsq = mistat.load_data('TSQ')
ax = tsq.plot()
ax.axhline(UCL, color='black')
ax.axhline(0, color='black')

<matplotlib.lines.Line2D at 0x7f343dbe1700>

The side by side boxplots in Fig. 4.2 aggregate the information of the 𝑇2 values
by board number.

55
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Fig. 4.1: Plot of 𝑇2 values with control limit

df = pd.DataFrame({
'T2': tsq,
'board': mistat.load_data('PLACE')['crcBrd'][48:],

})
ax = df.groupby('board').boxplot(column='T2', subplots=False, rot=90, grid=False)
ax.axhline(UCL, color='grey')
plt.show()

We see that even on the first 9 cards there are a few outliers, that is, points whose
𝑇2 is outside the control limits. All points from card 13 on and a majority of points
from boards 10, 11 and 12 have 𝑇2 values greater than UCL.

Exercise 4.2 Prove that if X has a multivariate normal distribution, 𝑁𝑣 (𝝁,𝝈), then
(X − 𝝁)′𝚺−1 (X − 𝝁) has a 𝜒2 distribution with 𝑣 degrees of freedom where 𝑅 =

𝜒2
1−𝑝

[𝑣] is the corresponding (1 − 𝑝) quantile of the 𝜒2 distribution with 𝑣 degrees
of freedom.

Solution 4.2 As𝑁𝑣 (𝝁,𝝈) is a multivariate normal distribution,𝚺 is positive definite.
Therefore there exists a nonsingular matrix 𝑷 = 𝚺

1
2 = so that 𝚺 = 𝑷𝑷′.

Using this we get,

(X − 𝝁)′𝚺−1 (X − 𝝁) = (X − 𝝁)′ (𝑷′)−1𝑷−1 (X − 𝝁)
= (X − 𝝁)′ (𝑷−1)′𝑷−1 (X − 𝝁)

=

(
𝑷−1 (X − 𝝁)

) ′
𝑷−1 (X − 𝝁)

= 𝒀 ′𝒀
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Fig. 4.2: Plot of 𝑇2 values with control limit

with 𝒀 = 𝑷−1 (X − 𝝁) = 𝚺− 1
2 (X − 𝝁). 𝒀 has a multivariate normal distribution

𝑁𝑣 (0, 𝑰). The product (X− 𝝁)′𝚺−1 (X− 𝝁) = 𝒀 ′𝒀 is therefore a 𝜒2 distribution with
𝑣 degrees of freedom.

Exercise 4.3 Sort the dataset CAR by variable cyl, indicating the number of cylin-
ders in a car, and run a𝑇2 chart with internally derived targets for the variables turn,
hp, mpg, with separate computations for cars with 4, 6 and 8 cylinders. How is the
number of cylinders affecting the overall performance of the cars?

Solution 4.3 Create 𝑇2 chart using separate computations by cylinders. The chart is
shown in Fig. 4.3.

car = mistat.load_data('CAR')
car = car.sort_values('cyl')
columns = ['turn', 'hp', 'mpg']

fig, axes = plt.subplots(nrows=3, figsize=[8, 8])
for cyl, ax in zip([4, 6, 8], axes):
base = car.loc[car['cyl'] == cyl, columns]
newdata = car.loc[car['cyl'] != cyl, columns]
mqcc = mistat.MultivariateQualityControlChart(base, qcc_type='T2single',

confidence_level=0.99, newdata=newdata)
mqcc.plot(ax=ax, show_legend=False)
ax.set_ylabel(f'{cyl} cylinders')
plt.tight_layout()

plt.show()

The 𝑇2 charts for the internally derived targets for 4 or 6 cylinders, show now
relevant differences towards the remaining data. For 8 cylinders on the other hand,
many of other cars show strong differences.
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Fig. 4.3: 𝑇2 charts for the CAR dataset using subsets based on number of cylinders
to derive internal targets (Excercise 4.3)

Exercise 4.4 Sort the dataset CAR.csv by variable origin, indicating the country
of origin, and run a 𝑇2 chart with internally derived targets for the variables turn,
hp, mpg, with separate computations for cars from 1 = US; 2 = Europe; 3 = Asia.
How is the country of origin affecting the overall performance of the cars?

Solution 4.4 Create𝑇2 chart using separate computations based on origin. The chart
is shown in Fig. 4.4.

car = mistat.load_data('CAR')
car = car.sort_values('cyl')
columns = ['turn', 'hp', 'mpg']
origins = [None, 'US', 'Europe', 'Asia']

fig, axes = plt.subplots(nrows=3, figsize=[8, 8])
for origin, ax in zip([1, 2, 3], axes):
base = car.loc[car['origin'] == origin, columns]
newdata = car.loc[car['origin'] != origin, columns]
mqcc = mistat.MultivariateQualityControlChart(base, qcc_type='T2single',

confidence_level=0.99, newdata=newdata)
mqcc.plot(ax=ax, show_legend=False)
ax.set_ylabel(f'Origin {origins[origin]}')

plt.tight_layout()
plt.show()
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Fig. 4.4: 𝑇2 charts for the CAR dataset using subsets based on number of cylinders
to derive internal targets (Excercise 4.4)

Using the European cars to derive internal targets, we can see that many of the
other cars are above the UCL. This is less frequent in the other two plots.

The differences are also obvious when the data are visualized in a scatterplot
matrix. See Fig. 4.5

sns.pairplot(car[[*columns, 'cyl']], hue='cyl', height=1.5)
sns.pairplot(car[[*columns, 'origin']], hue='origin', height=1.5)
plt.show()

Exercise 4.5 Load the dataset GASOL.csv and compute a 𝑇2 chart for 𝑥1, 𝑥2,
astm, endPt, yield. Design the chart with an external assigned target based on
observations 12–24. Compare the charts. Explain the differences.

Solution 4.5 Create 𝑇2 chart for full GASOL dataset.

gasol = mistat.load_data('GASOL')
mqcc = mistat.MultivariateQualityControlChart(gasol, qcc_type='T2single',

confidence_level=0.99)
ax = mqcc.plot()
ax.plot((11, 23), (1, 1), color='red')
plt.show()
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Fig. 4.5: Scatterplot matrix for the CAR dataset colored by cylinders (left) and origin
(right).
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Using observations 12 to 24 as an external assigned target, we get the 𝑇2 chart in
Fig. 4.7. All other data points have now 𝑇2 value greater than UCL. The scatterplot
matrix shows that the observations 12 to 24 have very distinct values especially for
𝑥1.

gasol = mistat.load_data('GASOL')
base = gasol.iloc[11:24]
mqcc_base = mistat.MultivariateQualityControlChart(base, qcc_type='T2single',

confidence_level=0.99)
mqcc = mistat.MultivariateQualityControlChart(gasol, qcc_type='T2single',

center=mqcc_base.stats.center, cov=mqcc_base.stats.cov,
confidence_level=0.99)

ax = mqcc.plot()
plt.show()
gasol['color'] = ['red' if 11 <= i < 24 else 'black'

for i in range(len(gasol))]
sns.pairplot(gasol, hue='color', height=1.75)
plt.show()

Exercise 4.6 Repeat Exercise 4.5, but this time design the chart with an externally
assigned target based on observations 25–32. Explain the computational difficulty.

Solution 4.6 The 𝑇2 chart and a scatterplot matrix are shown in Fig. 4.8. Compared
to Exercise 4.5, the effect is even stronger, as the variation of 𝑥1 of the subset is even
tighter and closer to 0. This results in very large values of 𝑇2.

gasol = mistat.load_data('GASOL')
base = gasol.iloc[24:32]
mqcc_base = mistat.MultivariateQualityControlChart(base, qcc_type='T2single',

confidence_level=0.99)
mqcc = mistat.MultivariateQualityControlChart(gasol, qcc_type='T2single',

center=mqcc_base.stats.center, cov=mqcc_base.stats.cov,
confidence_level=0.99)

ax = mqcc.plot()
plt.show()
gasol['color'] = ['red' if 24 <= i < 32 else 'black'

for i in range(len(gasol))]
sns.pairplot(gasol, hue='color', height=1.75)
plt.show()

Exercise 4.7 Calculate control limits for grouped data with 20 subgroups of size 5
and 6 dimensions, with internally derived targets (Eq. (4.4.2)). How will the control
limits change if you start monitoring a process with similar data?

Solution 4.7 With subgroups of size 5, and 6 dimensional data the control limits in
Phase II are equal to the control limits used in Phase I.

Exercise 4.8 Let 𝑋1 = (𝑥11, 𝑥12, . . . , 𝑥1𝑝) and 𝑋2 = (𝑥21, 𝑥22, . . . , 𝑥2𝑝) represent
the mean dissolution values of tablets at 𝑝 time instances of a reference product
and a batch under test, respectively. The Mahalanobis distance 𝑇2, between 𝑋1

and 𝑋2, is defined here as 𝐷𝑀 =
√︃
(𝑋2 − 𝑋1)′𝑆−1

pooled (𝑋2 − 𝑋1), where 𝑆pooled =

(𝑆reference+𝑆test)/2, is the pooled covariance matrix of the reference and test samples.
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Fig. 4.7: 𝑇2 charts for the GASOL dataset using observations 12 to 24 (note the
0-indexing) as an external assigned target. The bottom scatterplot matrix highlights
the subset values.
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Fig. 4.8: 𝑇2 charts for the GASOL dataset using observations 25 to 32 (note the
0-indexing) as an external assigned target. The bottom scatterplot matrix highlights
the subset values.
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The confidence region, CR, of the difference between batch and reference consists of
all vectors𝑌 satisfying: [(𝑌−(𝑋2−𝑋1)′𝑆−1

pooled (𝑌−(𝑋2−𝑋1)] ≤ 𝐾𝐹0.90 [𝑝, 2𝑛−𝑝−1]
where 𝐹0.90 [𝑝, 2𝑛 − 𝑝 − 1] is the 90th quantile of the 𝐹-distribution with degrees
of freedom 𝑝 and (2𝑛 − 𝑝 − 1). Prove that for measurements conducted at one time
instance (𝑝 = 1) these formulae correspond to the confidence intervals presented in
Chapter 3 (Kenett et al., 2022b).

Solution 4.8 For 𝑝 = 1, the matrices 𝑋1 and 𝑋2 reduce to a single vector 𝑥1 and 𝑥2.
In this case, the confidence region, CR, becomes: confidence region The equation
from Sect. 4.5

𝐶𝑅 =

{
Y : (Y − (x1 − x2))′𝑆−1

pooled (Y − (x1 − x2)′) ≤ 𝐾𝐹1−𝛼 [1, 2𝑛 − 2]
}

=

{
Y : (Y − (x1 − x2))′𝑆−1

pooled (Y − (x1 − x2)′) ≤
4(𝑛 − 1)
𝑛(2𝑛 − 2) 𝐹1−𝛼 [1, 2𝑛 − 2]

}
=

{
Y : (Y − (x1 − x2))′𝑆−1

pooled (Y − (x1 − x2)′) ≤
2
𝑛
𝐹1−𝛼 [1, 2(𝑛 − 1)]

}
Confidence interval from Chapter 3 (Kenett et al., 2022b) can be rewritten as

follows. (
�̄� − 𝑡1−𝛼/2 [𝑚 − 1] 𝑆

√
𝑚
, �̄� + 𝑡1−𝛼/2 [𝑚 − 1] 𝑆

√
𝑚

)
�̄� − 𝑡1−𝛼/2 [𝑚 − 1] 𝑆

√
𝑚

≤ 𝑦 ≤ �̄� + 𝑡1−𝛼/2 [𝑚 − 1] 𝑆
√
𝑚

−𝑡1−𝛼/2 [𝑚 − 1] 𝑆
√
𝑚

≤ 𝑦 − �̄� ≤ 𝑡1−𝛼/2 [𝑚 − 1] 𝑆
√
𝑚

(𝑦 − �̄�)2 ≤
(
𝑡1−𝛼/2 [𝑚 − 1] 𝑆

√
𝑚

)2

(𝑦 − �̄�)𝑆−2 (𝑦 − �̄�) ≤ 𝑡21−𝛼/2 [𝑚 − 1] 1
𝑚

Using the relationship 𝐹𝛼 [1, 𝑘] = 𝑡2𝛼 [𝑘] this becomes:

(𝑦 − �̄�)′𝑆−2 (𝑦 − �̄�) ≤ 1
𝑚
𝐹1−𝛼/2 [1, 𝑚 − 1]

In this case, 𝑆 is the standard deviation, so we can replace 𝑆2 with the pooled
covariance. We also replace 𝑚 − 1 with 2𝑛 − 2 and derive updated control limits.

(𝑦 − �̄�)′𝑆−1
pooled (𝑦 − �̄�) ≤

1
2𝑛 − 1

𝐹1−𝛼/2 [1, 2𝑛 − 2]



Chapter 5
Classical Design and Analysis of Experiments

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import itertools
import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.formula.api as smf
from statsmodels.stats import anova
import matplotlib.pyplot as plt
from pyDOE2 import fracfact

import mistat

Exercise 5.1 Describe a production process familiar to you, like baking of cakes,
or manufacturing concrete. List the pertinent variables. What is (are) the response
variable(s)? Classify the variables which affect the response to noise variables and
control variables. How many levels would you consider for each variable?

Solution 5.1 Preparing pancakes is a production process readily available for every-
one to experiment with. The steps are as follows:

1. Open readymix box.
2. Measure prespecified amount of readymix into measuring cup.
3. Pour prespecified amount of readymix into container.
4. Measure prespecified amount of water in measuring cup.
5. Add prespecified amount of water to container.
6. Mix material in container with one or two eggs.
7. Warm cooking pan.
8. Add oil to pan in liquid, solid or spray form.
9. Pour material into cooking pan for one or more pancakes.

10. Wait for darkening signs on the pancakes rim.
11. Turn over pancakes.
12. Wait again.

65
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13. Remove pancakes from cooking pan.

Examples of response variables include subjective taste testing by household mem-
bers with classification on a 1 to 5 scale, drop test for measuring pancake body
composition (drop pancake from the table to the floor and count the number of
pieces it decomposes into), quantitative tests performed in the laboratory to deter-
mine pancake chemical composition and texture.

Noise variables include environmental temperature and humidity, variability in
amounts of readymix, water, oil and cooking time, stove heating capacity and differ-
ences in quality of raw materials.

Examples of control variables include:

• Amounts of readymix-less and more than present value
• Preheating time of cooking pan-less and more than present value
• Pouring speed of water into readymix container-slower and faster
• Waiting time before turn over-not just ready and overdone.

Exercise 5.2 Different types of adhesives are used in a lamination process, in man-
ufacturing a computer card. The card is tested for bond strength. In addition to the
type of adhesive, a factor which might influence the bond strength is the curing
pressure (currently at 200 psi). Follow the basic steps of experimental design to set
a possible experiment for testing the effects of adhesives and curing pressure on the
bond strength.

Solution 5.2 Response variable: Bond strength test. Controllable factors: Adhesive
type, Curing pressure. Factor levels: Adhesive type - A, B, C, D, Curing pressure
- low, nominal, high. Experimental layout: 4x3 full factorial experiment with 4
replications.

Experimental Run Adhesive type Curing pressure Replication

1 A low 1 2 3 4
2 A nominal 1 2 3 4
3 A high 1 2 3 4
4 B lowl 1 2 3 4
5 B nominal 1 2 3 4

. . . . . . . . . . . . . . . . . . . . .

Experiment protocol:

1. Prepare 48 (3x4x4) computer cards.
2. Randomly split computer cards into 4 groups, 12 cards per group.
3. Randomly assign adhesive type to each group, 1 type per group.
4. Randomly assign curing pressure level to group of 12 cards, 1 level for 4 cards.
5. Attach to each computer card a sticker indicating experimental run, replication

number, adhesive type and curing pressure.
6. Randomize the order of the 48 cards.
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7. Run experiment according to randomized order and factorlevels indicated on
sticker by keeping factors not participating in experiment fixed (e.g., amount of
water).

8. Perform bond strength test and record data.
9. Analyze data with statistical model including main effects and interaction terms.

Exercise 5.3 Provide an example where blocking can reduce the variability of a
product.

Solution 5.3 Blocking reduces the variability of the product relative to factors being
studied. Examples include:

• Track and field athletes on a college team decided to investigate the effect of
sleeping hours on athletic performance. The experiment consisted of sleeping a
controlled amount of time prior to competitions. Individual athletes are natural
experimental blocks.

• A natural extension of the example in section 5.2 on testing shoe sole materials
is an experiment designed to test car tires. A natural block consists of the four
wheels of a car, with an additional blocking variable determined by the position
of the tires (front or rear).

• Experiments performed on plants are known to be sensitive to environmental
conditions. Blocking variables in such experiments consist of neighboring plots
of land where soil, humidity and temperature conditions are similar.

Exercise 5.4 Three factors 𝐴, 𝐵, 𝐶 are tested in a given experiment, designed to
assess their effects on the response variable. Each factor is tested at 3 levels. List all
the main effects and interactions.

Solution 5.4 Main effects: 𝜏𝐴
𝑖

, 𝜏𝐵
𝑗

, 𝜏𝐶
𝑘

each at 3 levels. First order interactions:
𝜏𝑖 𝑗 𝐴𝐵, 𝜏𝐴𝐶

𝑖𝑘
, 𝜏𝐵𝐶

𝑗𝑘
each at 9 levels. Second order interaction: 𝜏𝐴𝐵𝐶

𝑖 𝑗𝑘
at 27 levels.

Exercise 5.5 Let 𝑥1, 𝑥2 be two quantitative factors and 𝑌 a response variable. A
regression model 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝑒 is fitted to the data. Explain
why 𝛽12 can be used as an interaction parameter.

Solution 5.5 𝑌 = 𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽12𝑥1𝑥2+𝑒. If 𝛽12 = 0 then the model is additive.
The regression of𝑌 on 𝑥1 (𝑥2) are parallel for different values of 𝑥2 (𝑥1). On the other
hand, if 𝛽12 ≠ 0 then the regression of𝑌 on 𝑥1, for two values of 𝑥2, say 𝑥 (1)2 and 𝑥 (2)2 ,
are𝑌 = 𝛽0+(𝛽1+𝛽12𝑥

(1)
2 )𝑥1+𝛽2𝑥

(1)
2 +𝑒, and𝑌 = 𝛽0+(𝛽1+𝛽12𝑥

(2)
2 )𝑥1+𝛽2𝑥

(2)
2 +𝑒 These

are regression lines with different slopes. This means that the model is nonadditive
and the extent of the interaction depends on 𝛽12.

Exercise 5.6 Consider the ISC values for times 𝑡1, 𝑡2 and 𝑡3 in dataset SOCELL.csv.
Make a paired comparison for testing whether the mean ISC in time 𝑡2 is different
from that in time 𝑡1, by using a 𝑡-test.

Solution 5.6 Use the function ttest rel from scipy to run a paired t-test.
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ISC = mistat.load_data('SOCELL')
stats.ttest_rel(ISC['t2'], ISC['t1'])

Ttest_relResult(statistic=11.302222594952937,
pvalue=9.758913823226797e-09)

The difference between the two means is significant

Exercise 5.7 Use permutation test from scipy to perform a randomization test
for the differences in the ISC values of the solar cells in times 𝑡2 and 𝑡3 (dataset
SOCELL.csv).

Solution 5.7 The permutation test requires the definition of the target statistic.

def statistic(x, y):
return np.mean(x) - np.mean(y)

The permutation test is then run as follows. The keyword argumentpermutation type=’samples’
corresponds to running a paired t-test.

res = stats.permutation_test((ISC['t2'], ISC['t3']), statistic,
permutation_type='samples', n_resamples=1000)

res.pvalue.round(5)

0.11389

A standard t-test gives;

stats.ttest_rel(ISC['t2'], ISC['t3']).pvalue.round(5)

0.11567

Both results are comparable. We can also visualize the distribution of the statistic;
see Fig. 5.1.

fig, ax = plt.subplots()
ax.hist(res.null_distribution, bins=20, color='lightgrey')
ax.axvline(statistic(ISC['t2'], ISC['t3']), color='black')
plt.show()

Exercise 5.8 Box et al. (2005) give the results of four treatments 𝐴, 𝐵, 𝐶, 𝐷 in
penicillin manufacturing in five different blends (blocks) shown in Table 5.1.

Perform an ANOVA to test whether there are significant differences between the
treatments or between the blends.

Solution 5.8 First create the dataset:
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Fig. 5.1: Distribution resulting from the randomization paired comparison

Table 5.1: Result of four treatments in pencillin manufacturing

Treatments
blends 𝐴 𝐵 𝐶 𝐷

1 89 88 97 94
2 84 77 92 79
3 81 87 87 85
4 87 92 89 84
5 79 81 80 88

df = pd.DataFrame([
['B1', 'A', 89], ['B1', 'B', 88], ['B1', 'C', 97], ['B1', 'D', 94],
['B2', 'A', 84], ['B2', 'B', 77], ['B2', 'C', 92], ['B2', 'D', 79],
['B3', 'A', 81], ['B3', 'B', 87], ['B3', 'C', 87], ['B3', 'D', 85],
['B4', 'A', 87], ['B4', 'B', 92], ['B4', 'C', 89], ['B4', 'D', 84],
['B5', 'A', 79], ['B5', 'B', 81], ['B5', 'C', 80], ['B5', 'D', 88],

], columns=['blend', 'treatment', 'result'])

Then use statsmodels to perform an ANOVA.

model = smf.ols('result ˜ C(blend) + C(treatment)', data=df).fit()
anova.anova_lm(model)

df sum_sq mean_sq F PR(>F)
C(blend) 4.0 264.0 66.000000 3.504425 0.040746
C(treatment) 3.0 70.0 23.333333 1.238938 0.338658
Residual 12.0 226.0 18.833333 NaN NaN

There are no significant differences between the treatments. There are significant
differences between blends, the most extreme difference being between blend 1 and
blend 5. See also Fig. 5.2.

fig, axes = plt.subplots(ncols=2)
df.groupby('blend').boxplot(column='result', subplots=False,



70 5 Classical Design and Analysis of Experiments

(B
1,

 re
su

lt)

(B
2,

 re
su

lt)

(B
3,

 re
su

lt)

(B
4,

 re
su

lt)

(B
5,

 re
su

lt)

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

(A
, r

es
ul

t)

(B
, r

es
ul

t)

(C
, r

es
ul

t)

(D
, r

es
ul

t)

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

Fig. 5.2: Boxplot representation shows differences of blend and treatment effect

Table 5.2: Results of treatments 𝐴, 𝐵, 𝐶, · · · , 𝐻 for different treatments

block Treatments Block Treatments
1 𝐴 38 𝐵 30 15 𝐷 11 𝐺 24
2 𝐶 50 𝐷 27 16 𝐹 37 𝐻 39
3 𝐸 33 𝐹 28 17 𝐴 23 𝐹 40
4 𝐺 62 𝐻 30 18 𝐵 20 𝐷 14
5 𝐴 37 𝐶 25 19 𝐶 18 𝐻 10
6 𝐵 38 𝐻 52 20 𝐸 22 𝐺 52
7 𝐷 89 𝐸 89 21 𝐴 66 𝐺 67
8 𝐹 27 𝐺 75 22 𝐵 23 𝐹 46
9 𝐴 17 𝐷 25 23 𝐶 22 𝐸 28

10 𝐵 47 𝐺 63 24 𝐷 20 𝐻 40
11 𝐶 32 𝐹 39 25 𝐴 27 𝐻 32
12 𝐸 20 𝐻 18 26 𝐵 10 𝐸 40
13 𝐴 5 𝐸 15 27 𝐶 32 𝐺 33
14 𝐵 45 𝐶 38 28 𝐷 18 𝐹 23

rot=90, grid=False, ax=axes[0])
df.groupby('treatment').boxplot(column='result', subplots=False,

rot=90, grid=False, ax=axes[1])
plt.tight_layout()
plt.show()

Exercise 5.9 Eight treatments 𝐴, 𝐵, 𝐶, · · · , 𝐻 were tested in a BIBD of 28 blocks,
𝑘 = 2 treatments per block, 𝑟 = 7 and _ = 1. The results of the experiments are
shown in Table 5.2

Make an ANOVA to test the significance of the block effects, treatment effects, If
the treatment effects are significant, make multiple comparisons of the treatments.

Solution 5.9 First create the dataset:
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df = pd.DataFrame([
[1, 'A', 38], [1, 'B', 30], [2, 'C', 50], [2, 'D', 27],
[3, 'E', 33], [3, 'F', 28], [4, 'G', 62], [4, 'H', 30],
[5, 'A', 37], [5, 'C', 25], [6, 'B', 38], [6, 'H', 52],
[7, 'D', 89], [7, 'E', 89], [8, 'F', 27], [8, 'G', 75],
[9, 'A', 17], [9, 'D', 25], [10, 'B', 47], [10, 'G', 63],
[11, 'C', 32], [11, 'F', 39], [12, 'E', 20], [12, 'H', 18],
[13, 'A', 5], [13, 'E', 15], [14, 'B', 45], [14, 'C', 38],
[15, 'D', 11], [15, 'G', 24], [16, 'F', 37], [16, 'H', 39],
[17, 'A', 23], [17, 'F', 40], [18, 'B', 20], [18, 'D', 14],
[19, 'C', 18], [19, 'H', 10], [20, 'E', 22], [20, 'G', 52],
[21, 'A', 66], [21, 'G', 67], [22, 'B', 23], [22, 'F', 46],
[23, 'C', 22], [23, 'E', 28], [24, 'D', 20], [24, 'H', 40],
[25, 'A', 27], [25, 'H', 32], [26, 'B', 10], [26, 'E', 40],
[27, 'C', 32], [27, 'G', 33], [28, 'D', 18], [28, 'F', 23],

], columns=['block', 'treatment', 'result'])

The ANOVA gives the following result:

model = smf.ols('result ˜ C(block) + C(treatment)', data=df).fit()
anova.anova_lm(model)

df sum_sq mean_sq F PR(>F)
C(block) 27.0 15030.482143 556.684524 5.334113 0.000109
C(treatment) 7.0 1901.875000 271.696429 2.603376 0.042207
Residual 21.0 2191.625000 104.363095 NaN NaN

Both the effects of the treatments and the blocks are significant at the 𝛼 = 0.05
level.

The Scheffé coefficient for 𝛼 = 0.05 is 𝑆0.05 = (7 × 𝐹0.95 [7, 21])1/2 = 4.173 and
𝑐𝑝 =

√
104.363 = 10.216. Thus the treatments can be divided into two homogenous

groups, 𝐺1 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐻} and 𝐺2 = {𝐺}. The 0.95 confidence interval for
the difference of the group means is 20.413 ± 17.225 which shows that the group
means are significantly different. See Fig. 5.3 for a visualization of the different
groups.

df['group'] = ['G1' if t == 'G' else 'G2' for t in df['treatment']]
fig, axes = plt.subplots(ncols=3)
df.groupby('block').boxplot(column='result', subplots=False,

rot=90, grid=False, ax=axes[0])
df.groupby('treatment').boxplot(column='result', subplots=False,

rot=90, grid=False, ax=axes[1])
df.groupby('group').boxplot(column='result', subplots=False,

rot=90, grid=False, ax=axes[2])
plt.tight_layout()
plt.show()

Exercise 5.10 Four different methods of preparing concrete mixtures 𝐴, 𝐵, 𝐶, 𝐷
were tested, these methods consisted of two different mixture ratios of cement to
water and two blending duration). The four methods (treatments) were blocks in four
batches and four days, according to a Latin square design. The concrete was poured
to cubes and tested for compressive strength [Kg/cm2] after 7 days of storage in
special rooms with 20◦C temperature and 50% relative humidity. The results are in
Table 5.3
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Fig. 5.3: Boxplot representation for Exercise 5.9

Table 5.3: Compressive strengths of cement for different treatments

batches
Days 1 2 3 4

𝐴 𝐵 𝐶 𝐷

1 312 299 315 290
𝐶 𝐴 𝐷 𝐵

2 295 317 313 300
𝐵 𝐷 𝐴 𝐶

3 295 298 312 315
𝐷 𝐶 𝐵 𝐴

4 313 314 299 300

Are the differences between the strength values of different treatments significant?
[Perform the ANOVA.]

Solution 5.10 Prepare the dataset.

df = pd.DataFrame([
[1,1,'A',312], [1,2,'B',299], [1,3,'C',315], [1,4,'D',290],
[2,1,'C',295], [2,2,'A',317], [2,3,'D',313], [2,4,'B',300],
[3,1,'B',295], [3,2,'D',298], [3,3,'A',312], [3,4,'C',315],
[4,1,'D',313], [4,2,'C',314], [4,3,'B',299], [4,4,'A',300],

], columns=['day', 'batch', 'mixture', 'result'])

Build a model and perform an ANOVA.
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model = smf.ols('result ˜ C(day) + C(batch) + C(mixture)', data=df).fit()
anova.anova_lm(model)

df sum_sq mean_sq F PR(>F)
C(day) 3.0 16.1875 5.395833 0.048079 0.984704
C(batch) 3.0 165.6875 55.229167 0.492111 0.700652
C(mixture) 3.0 388.6875 129.562500 1.154446 0.401167
Residual 6.0 673.3750 112.229167 NaN NaN

The differences between mixtures, batches or days are not significant.

Exercise 5.11 Repeat the experiments described in Example 5.7 at the low levels of
factors𝑚, 𝑣0, 𝑝0, 𝑡, and 𝑡0. Perform the ANOVA for the main effects and interaction of
spring coefficient 𝑘 and piston weight𝑚 on the cycle time. Use a marginal interaction
plot to visualize both main effects and interaction. Are your results different from
those obtained in the example?

Solution 5.11 In Python:

from mistat.design import doe
np.random.seed(2)

# Build design from factors
FacDesign = doe.full_fact({

'k': [1500, 3000, 4500],
's': [0.005, 0.0125, 0.02],

})

# Randomize design
FacDesign = FacDesign.sample(frac=1).reset_index(drop=True)

# Setup and run simulator with five replicates
# for each combination of factors
simulator = mistat.PistonSimulator(n_replicate=5, **FacDesign,

m=30, v0=0.005, p0=90_000, t=290, t0=340)
result = simulator.simulate()

model = smf.ols('seconds ˜ C(k) * C(s)', data=result).fit()
print(anova.anova_lm(model).round(4))

df sum_sq mean_sq F PR(>F)
C(k) 2.0 0.0039 0.0019 2.0508 0.1434
C(s) 2.0 0.1030 0.0515 54.8672 0.0000
C(k):C(s) 4.0 0.0058 0.0015 1.5531 0.2078
Residual 36.0 0.0338 0.0009 NaN NaN

Fig. 5.4 shows the marginal interaction plot.

_, ax = plt.subplots(figsize=[5, 4])
mistat.marginalInteractionPlot(result[['s', 'k', 'seconds']], 'seconds', ax=ax)
plt.show()

Compared to Example 5.7, the cycle times are consistently lower. However, their
behavior on changing the spring coefficient or the piston weight is similar.

Exercise 5.12 For the data from Exercise 5.11 compute the least squares estimates
of the main effects on the means and on the standard deviations.
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Fig. 5.4: Effect of Spring Coefficient 𝑘 and Piston surface area 𝑠 on Cycle Time

Solution 5.12 Calculate the means and standard deviations of the cycle time by
grouping on 𝑠 and 𝑘 .

# group and aggregate seconds by group
grouped = result.groupby(['s', 'k']).agg({'seconds': ['mean', 'std']})
# convert the multi-level index back to columns
grouped = grouped.reset_index()
# rename the columns to remove the multi-level index for the column names
grouped.columns = ['s', 'k', 'mean', 'std']
print(grouped)

s k mean std
0 0.0050 1500 0.093227 0.026990
1 0.0050 3000 0.148749 0.066597
2 0.0050 4500 0.144906 0.056237
3 0.0125 1500 0.033497 0.003607
4 0.0125 3000 0.037292 0.007923
5 0.0125 4500 0.037975 0.005075
6 0.0200 1500 0.019859 0.001296
7 0.0200 3000 0.021716 0.002626
8 0.0200 4500 0.019957 0.003601

Use statsmodels for the least squares estimates of mean

model = smf.ols(f"mean ˜ s + k + s:k", data=grouped).fit()
model.params

Intercept 0.090547
s -3.791223
k 0.000021
s:k -0.001146
dtype: float64
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and std.

model = smf.ols(f"std ˜ s + k + s:k", data=grouped).fit()
model.params

Intercept 0.025397
s -1.366082
k 0.000011
s:k -0.000599
dtype: float64

Exercise 5.13 A 24 factorial experiment gave the following response values, arranged
in standard order: 72, 60, 90, 80, 65, 60, 85, 80, 60, 50, 88, 82, 58, 50, 84, 75.

(i) Estimate all possible main effects.
(ii) Estimate 𝜎2 under the assumption that all the interaction parameters are zero.

(iii) Determine a confidence interval for 𝜎2 at level of confidence 0.99.

Solution 5.13 Construct a data frame for a 24 factorial design in standard order:

treatments = []
for combo in itertools.product([0, 1], [0,1], [0,1], [0,1]):

nu = sum(ij * 2**(j-1) for j, ij in enumerate(combo, 1))
treatments.append({

'nu': int(nu),
'A': combo[0], 'B': combo[1],
'C': combo[2], 'D': combo[3],

})
# sort to standard order
df = pd.DataFrame(treatments).sort_values('nu', ignore_index=True)
df = df.set_index('nu')
# change the factors to (-1, 1)
for factor in ('A', 'B', 'C', 'D'):

df.loc[df[factor] == 0, factor] = -1

Combine with the response values.

df['response'] = [72, 60, 90, 80, 65, 60, 85, 80, 60, 50,
88, 82, 58, 50, 84, 75]

(i)

model = smf.ols("response ˜ A + B + C + D", data=df).fit()
model.params

Intercept 71.1875
A -4.0625
B 11.8125
C -1.5625
D -2.8125
dtype: float64

The LSE of the main effects are �̂� = −4.0625, �̂� = 11.8125, �̂� = −1.5625 and
�̂� = −2.8125.

(ii) An estimate of 𝜎2 with 11 d.f. is �̂�2 = 9.2898.
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Table 5.4: Results of 32 factorial experiment with 𝑛 = 3 observations

𝐴1 𝐴2 𝐴3
18.3 17.9 19.1

𝐵1 17.9 17.6 19.0
18.5 16.2 18.9
20.5 18.2 22.1

𝐵2 21.1 19.5 23.5
20.7 18.9 22.9
21.5 20.1 22.3

𝐵3 21.7 19.5 23.5
21.9 18.9 23.3

sigma2 = np.sum(model.resid**2) / 11

(iii) A 0.99 level confidence interval for 𝜎2 is (3.819,39.254).

df = 11
alpha_left = 1 - (1-0.99) / 2
alpha_right = (1-0.99) / 2
df * sigma2 / stats.chi2.ppf(alpha_left, df), df * sigma2 / stats.chi2.ppf(alpha_right, df)

(3.8191156334967578, 39.25424120484004)

Exercise 5.14 A 32 factorial experiment, with 𝑛 = 3 replications, gave the observa-
tions in Table 5.4.

Perform an ANOVA to test the main effects and interactions. Break the between
treatments sum of squares to one degree of freedom components. Use the Scheffé
𝑆𝛼 coefficient to determine which effects are significant.

Solution 5.14 Prepare the dataset:

df = pd.DataFrame(
[['A1', 'B1', v] for v in [18.3, 17.9, 18.5]] +
[['A2', 'B1', v] for v in [17.9, 17.6, 16.2]] +
[['A3', 'B1', v] for v in [19.1, 19.0, 18.9]] +
[['A1', 'B2', v] for v in [20.5, 21.1, 20.7]] +
[['A2', 'B2', v] for v in [18.2, 19.5, 18.9]] +
[['A3', 'B2', v] for v in [22.1, 23.5, 22.9]] +
[['A1', 'B3', v] for v in [21.5, 21.7, 21.9]] +
[['A2', 'B3', v] for v in [20.1, 19.5, 18.9]] +
[['A3', 'B3', v] for v in [22.3, 23.5, 23.3]],
columns=['a', 'b', 'result']

)

Build the model and performan an ANOVA.

model = smf.ols('result ˜ C(a) + C(b) + C(a):C(b)', data=df).fit()
anova.anova_lm(model)
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Fig. 5.5: Boxplot representation for Exercise 5.14

df sum_sq mean_sq F PR(>F)
C(a) 2.0 43.080741 21.540370 70.495758 3.055533e-09
C(b) 2.0 54.169630 27.084815 88.641212 4.802685e-10
C(a):C(b) 4.0 4.345926 1.086481 3.555758 2.633500e-02
Residual 18.0 5.500000 0.305556 NaN NaN

Visualization of the factor and factor interactions are shown in Fig. 5.5

df['a:b'] = [f'{a}:{b}' for a, b in zip(df['a'], df['b'])]
fig, axes = plt.subplots(ncols=3)
df.groupby('a').boxplot(column='result', subplots=False,

rot=90, grid=False, ax=axes[0])
df.groupby('b').boxplot(column='result', subplots=False,

rot=90, grid=False, ax=axes[1])
df.groupby('a:b').boxplot(column='result', subplots=False,

rot=90, grid=False, ax=axes[2])
plt.tight_layout()
plt.show()

Exercise 5.15 Construct a 28−2 fractional replication, using the generators 𝐴𝐵𝐶𝐷𝐺
and 𝐴𝐵𝐸𝐹𝐻. What is the resolution of this design? Write the aliases to the main
effects, and to the first order interactions with the factor 𝐴.

Solution 5.15 The subgroup of defining parameters is

generators = ['ABCDG', 'ABEFH']
print(mistat.subgroupOfDefining(generators))
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['', 'ABCDG', 'ABEFH', 'CDEFGH']

The design is therefore of resolution V.
The aliases of the design using the generators are:

from mistat.design.doeUtilities import aliasesInSubgroup
for main_effect in ('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'):

print(main_effect,
aliasesInSubgroup(main_effect, generators))

A ['ACDEFGH', 'BCDG', 'BEFH']
B ['ACDG', 'AEFH', 'BCDEFGH']
C ['ABCEFH', 'ABDG', 'DEFGH']
D ['ABCG', 'ABDEFH', 'CEFGH']
E ['ABCDEG', 'ABFH', 'CDFGH']
F ['ABCDFG', 'ABEH', 'CDEGH']
G ['ABCD', 'ABEFGH', 'CDEFH']
H ['ABCDGH', 'ABEF', 'CDEFG']

The shortest alias are of length four. This means our design has resolution IV.
The aliases for the first order interaction with the factor 𝐴 are:

for interaction in ('B', 'C', 'D', 'E', 'F', 'G', 'H'):
print(f'A{interaction}',

aliasesInSubgroup(f'A{interaction}', generators))

AB ['ABCDEFGH', 'CDG', 'EFH']
AC ['ADEFGH', 'BCEFH', 'BDG']
AD ['ACEFGH', 'BCG', 'BDEFH']
AE ['ACDFGH', 'BCDEG', 'BFH']
AF ['ACDEGH', 'BCDFG', 'BEH']
AG ['ACDEFH', 'BCD', 'BEFGH']
AH ['ACDEFG', 'BCDGH', 'BEF']

You can construct a block of the 28−2 design using this Python code.

generator = 'A B C D E F G H ABCDG ABEFH'
design = pd.DataFrame(fracfact(generator), columns=generator.split())
fracfact_design = design.query('ABCDG == 1 & ABEFH == 1')

Exercise 5.16 Consider a full factorial experiment of 26 = 64 runs. It is required
to partition the runs to 8 blocks of 8. The parameters in the group of defining
parameters are confounded with the effects of blocks and are not estimable. Show
which parameters are not estimable if the blocks are generated by 𝐴𝐶𝐸 , 𝐴𝐵𝐸𝐹, and
𝐴𝐵𝐶𝐷.

Solution 5.16 The subgroup of defining parameters and therefore the parameters
that are not estimable for this generator are:

print(mistat.subgroupOfDefining(['ACE', 'ABEF', 'ABCD']))

['', 'ABCD', 'ABEF', 'ACE', 'ADF', 'BCF', 'BDE', 'CDEF']
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Table 5.5: Design matrix and response of 22 factorial design

𝑋1 𝑋2 𝑌

−1 −1 55.8
−1 −1 54.4

1 −1 60.3
1 −1 60.9

−1 1 63.9
−1 1 64.4

1 1 67.9
1 1 68.5
0 0 61.5
0 0 62.0
0 0 61.9
0 0 62.4

Exercise 5.17 A 22 factorial design is expanded by using 4 observations at 0. The
design matrix and the response are in Table 5.5.

(i) Fit a response function of the form: 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽12𝑋1𝑋2 + 𝑒, and
plot its contour lines.

(ii) Estimate the variance 𝜎2 and test the goodness of fit of this model.

Solution 5.17 (i) Prepare the dataset.

df = pd.DataFrame([
[-1, -1, 55.8], [-1, -1, 54.4], [1, -1, 60.3], [1, -1, 60.9],
[-1, 1, 63.9], [-1, 1, 64.4], [1, 1, 67.9], [1, 1, 68.5],
[0, 0, 61.5], [0, 0, 62.0], [0, 0, 61.9], [0, 0, 62.4]

], columns=['X1', 'X2', 'Y'])

Build the model.

formula = ('Y ˜ X1 + X2 + X1:X2')
model = smf.ols(formula, data=df).fit()
print(model.summary2())

Results: Ordinary least squares
=================================================================
Model: OLS Adj. R-squared: 0.986
Dependent Variable: Y AIC: 19.8454
Date: 2023-04-25 11:37 BIC: 21.7851
No. Observations: 12 Log-Likelihood: -5.9227
Df Model: 3 F-statistic: 262.0
Df Residuals: 8 Prob (F-statistic): 2.52e-08
R-squared: 0.990 Scale: 0.23568
------------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
------------------------------------------------------------------
Intercept 61.9917 0.1401 442.3492 0.0000 61.6685 62.3148
X1 2.3875 0.1716 13.9101 0.0000 1.9917 2.7833
X2 4.1625 0.1716 24.2516 0.0000 3.7667 4.5583
X1:X2 -0.3625 0.1716 -2.1120 0.0677 -0.7583 0.0333
-----------------------------------------------------------------
Omnibus: 0.321 Durbin-Watson: 2.580
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Fig. 5.6: Contour plot of equal responses (Exercise 5.17)

Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.447
Skew: 0.054 Prob(JB): 0.800
Kurtosis: 2.061 Condition No.: 1
=================================================================

The response function is𝑌 = 62.0+2.39𝑋1+4.16𝑋2−0.363𝑋1𝑋2, with 𝑅2 = 0.99.
The contour plot is given in Figure 11.1.

def plotResponseSurface(model, ncontours=20):
x1 = np.linspace(-1, 1)
x2 = np.linspace(-1, 1)
X1, X2 = np.meshgrid(x1, x2)
exog = pd.DataFrame({'X1': X1.ravel(), 'X2': X2.ravel()})
responses = model.predict(exog=exog)
CS = plt.contour(x1, x2,

responses.values.reshape(len(x2), len(x1)),
ncontours, colors='gray')

ax = plt.gca()
ax.clabel(CS, inline=True, fontsize=10)
ax.set_xlabel('X1')
ax.set_ylabel('X2')
return ax

plotResponseSurface(model)
plt.show()

(ii)

# derive variance around the regression using an ANOVA (mean_sq of residuals)
res = anova.anova_lm(model)
res
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df sum_sq mean_sq F PR(>F)
X1 1.0 45.601250 45.601250 193.490387 6.905851e-07
X2 1.0 138.611250 138.611250 588.140552 8.915958e-09
X1:X2 1.0 1.051250 1.051250 4.460552 6.766219e-02
Residual 8.0 1.885417 0.235677 NaN NaN

Using the four observations at (0,0) we derive an estimate of the variance �̂�2 =

0.13667, 3 d.f. The variance around the regression is 𝑠2
𝑦 | (𝑥 ) = 0.2357, 8 d.f. Use

F-distribution to derive the 𝑝-value.

# Estimate of variance?
# ['Residual', 'mean_sq'] gives variance around regression
sigma2 = df[df['X1'] == 0]['Y'].var()
var_residuals = res.loc['Residual', 'mean_sq']

F = var_residuals / sigma2
p = 1 - stats.f(8, 3).cdf(F)
print(f'F-ratio: {F:.4f}; p-value: {p:.2f}')

F-ratio: 1.7245; p-value: 0.36

The ratio 𝐹 =
𝑠2
𝑦 | (𝑥)
�̂�2 = 1.7246 gives a 𝑝-value of 𝑃 = 0.36. This shows there is no

significant differences between the variances.

Table 5.6: Design matrix and the response for a control composite design of Exer-
cise 5.18

𝑋1 𝑋2 𝑌

1.0 0.000 95.6
0.5 0.866 77.9

−0.5 0.866 76.2
−1.0 0 54.5
−0.5 −0.866 63.9

0.5 −0.866 79.1
0 0 96.8
0 0 94.8
0 0 94.4

Exercise 5.18 Table 5.6 represents a design matrix and the response for a control
composite design.

(i) Estimate the response function and its stationary point.
(ii) Plot contours of equal response, in two dimensions.

(iii) Conduct an ANOVA.

Solution 5.18 Prepare the dataset and build a regression model.

df = pd.DataFrame([
[1, 0, 95.6], [0.5, 0.866, 77.9], [-0.5, 0.866, 76.2],
[-1, 0, 54.5], [-0.5, -0.866, 63.9], [0.5, -0.866, 79.1],
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[0, 0, 96.8], [0, 0, 94.8], [0, 0, 94.4],
], columns=['X1', 'X2', 'Y'])

formula = ('Y ˜ X1 + X2 + X1*X2 + I(X1**2) + I(X2**2)')
model = smf.ols(formula, data=df).fit()
print(model.summary2())

Results: Ordinary least squares
================================================================
Model: OLS Adj. R-squared: 0.855
Dependent Variable: Y AIC: 59.2942
Date: 2023-04-25 11:37 BIC: 60.4776
No. Observations: 9 Log-Likelihood: -23.647
Df Model: 5 F-statistic: 10.47
Df Residuals: 3 Prob (F-statistic): 0.0408
R-squared: 0.946 Scale: 33.638
----------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
----------------------------------------------------------------
Intercept 95.3333 3.3485 28.4703 0.0001 84.6768 105.9898
X1 16.5167 3.3485 4.9325 0.0160 5.8602 27.1732
X2 3.2044 3.3486 0.9569 0.4092 -7.4524 13.8612
X1:X2 -7.7945 6.6972 -1.1638 0.3286 -29.1081 13.5191
I(X1 ** 2) -20.2833 5.2945 -3.8310 0.0313 -37.1327 -3.4339
I(X2 ** 2) -21.3179 5.2948 -4.0262 0.0275 -38.1683 -4.4675
----------------------------------------------------------------
Omnibus: 3.213 Durbin-Watson: 3.565
Prob(Omnibus): 0.201 Jarque-Bera (JB): 0.950
Skew: 0.006 Prob(JB): 0.622
Kurtosis: 1.408 Condition No.: 4
================================================================

The response function is𝑌 = 95.3+16.5𝑋1+3.20𝑋2−20.3𝑋2
1−21.3𝑋2

2−7.79𝑋1𝑋2.
We can use ResponseSurfaceMethod from the mistat package to identify the

stationary point.

rsm = mistat.ResponseSurfaceMethod(model, ['X1', 'X2'])
stationary = rsm.stationary_point()
stationary

X1 0.407004
X2 0.000751
dtype: float64

The stationary point is at (0.4, 0).
(ii) To plot the response surface, we reuse the function defined in Exercise 5.17;

see Fig. 5.7.

ax = plotResponseSurface(model)
ax.scatter(*stationary, color='black')
plt.show()

(iii) Perform an ANOVA.

anova.anova_lm(model)

df sum_sq mean_sq F PR(>F)
X1 1.0 818.400833 818.400833 24.329813 0.015976
X2 1.0 30.802500 30.802500 0.915712 0.409198
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Fig. 5.7: Contour plot of equal responses; the stationary point is shown as a black
dot (Exercise 5.18)

X1:X2 1.0 45.562500 45.562500 1.354504 0.328640
I(X1 ** 2) 1.0 320.800500 320.800500 9.536911 0.053790
I(X2 ** 2) 1.0 545.280333 545.280333 16.210355 0.027533
Residual 3.0 100.913333 33.637778 NaN NaN

The factor 𝑋1 and the squares 𝑋1, 𝑋2 are significant. 𝑋2 and the interaction
𝑋1 : 𝑋2 are not significant.





Chapter 6
Quality by Design

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
from pyDOE2 import fracfact

import mistat

Exercise 6.1 The objective is to find the levels of the factors of the piston, which
yield an average cycle time of 0.02 [sec]. Execute a PistonSimulation, with sample
size 𝑛 = 100:

(i) Determine which treatment combination yields the smallest

𝑀𝑆𝐸 = (𝑌 − 0.45)2 + 𝑆2.

(ii) Determine which treatment combination yields the largest SN ratio,

[ = 10 log10

(
𝑌2

𝑆2 − 1
100

)
.

What is the MSE at this treatment combination?

The five factors that are varied are: piston weight, piston surface area, initial gas vol-
ume, spring coefficient, and ambient temperature. The factors atmospheric pressure
and filling gas temperature are kept constant at the midrange level.

Solution 6.1 Create a factorial design of the five factors using the highest and lowest
levels.

from mistat.design import doe
np.random.seed(1)

85

https://gedeck.github.io/mistat-code-solutions/IndustrialStatistics/
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# Build design from factors
FacDesign = doe.full_fact({

'm': [30, 60],
's': [0.005, 0.02],
'v0': [0.002, 0.01],
'k': [1500, 4500],
't': [290, 296],

})

# Randomize design
FacDesign = FacDesign.sample(frac=1).reset_index(drop=True)

Run the Piston simulator using 100 replicates for each factor combination.

# Setup and run simulator with 100 replicates
# for each combination of factors
simulator = mistat.PistonSimulator(n_replicate=100, **FacDesign,

p0=100_000, t0=350)
result = simulator.simulate()

Group the results by the five factor levels and calculate mean and standard devi-
ation of the cycle time.

factors = ['m', 's', 'v0', 'k', 't']
result = result.groupby(factors, as_index=False).agg({'seconds': ['mean', 'std']})
result.columns = [*factors, 'mean', 'std']

(i) Add the MSE column and sort by its value to determine the best factor
combinations.

result['MSE'] = (result['mean'] - 0.02)**2 + result['std']**2
result = result.sort_values('MSE')
best_MSE = result.iloc[0,:]
result.head()

m s v0 k t mean std MSE
26 60 0.020 0.002 4500 290 0.009580 0.002223 0.000114
27 60 0.020 0.002 4500 296 0.009659 0.002783 0.000115
24 60 0.020 0.002 1500 290 0.009201 0.002364 0.000122
25 60 0.020 0.002 1500 296 0.008888 0.002322 0.000129
16 60 0.005 0.002 1500 290 0.023836 0.010829 0.000132

best_MSE

m 60.000000
s 0.020000
v0 0.002000
k 4500.000000
t 290.000000
mean 0.009580
std 0.002223
MSE 0.000114
Name: 26, dtype: float64

(ii) Calculate the SN ratio and determine the factor combinations with the largest
SN ratio.
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result['SN'] = 10 * np.log10(result['mean']**2 / result['std']**2 - 1/100)
result = result.sort_values('SN', ascending=False).head()
best_SN = result.iloc[0,:]
result.head()

m s v0 k t mean std MSE SN
29 60 0.02 0.01 1500 296 0.049291 0.003361 0.000869 23.325647
13 30 0.02 0.01 1500 296 0.042370 0.003010 0.000509 22.970572
30 60 0.02 0.01 4500 290 0.056468 0.004261 0.001348 22.445850
28 60 0.02 0.01 1500 290 0.049085 0.003820 0.000861 22.177197
31 60 0.02 0.01 4500 296 0.057546 0.004480 0.001430 22.173743

best_SN

m 60.000000
s 0.020000
v0 0.010000
k 1500.000000
t 296.000000
mean 0.049291
std 0.003361
MSE 0.000869
SN 23.325647
Name: 29, dtype: float64

This treatment combination has an MSE of 0.00087, which is 7.7 times bigger
than the minimal MSE. This exercise demonstrates the need for a full analysis of
the effects and the dangers of relying on a simplistic observation of the experiment’s
outcomes.

Exercise 6.2 Run a PistonSimulation with sample size of 𝑛 = 100 and generate the
sample means and standard deviation of the 27 = 128 treatment combinations of a
full factorial experiment, for the effects on the piston cycle time. Perform regression
analysis to find which factors have significant effects on the signal-to-noise ratio
𝑆𝑁 = log(( �̄�/𝑆)2).

Solution 6.2 Create a 27 full factorial design and run the piston simulator with 100
replicates for each factor combination. After grouping by factors, determine mean
and standard deviation of the cycle time. Finally, calculate the signal noise ratio 𝑆𝑁 .

np.random.seed(1)

# Build design from factors
FacDesign = doe.full_fact({

'm': [30, 60],
's': [0.005, 0.02],
'v0': [0.002, 0.01],
'k': [1500, 4500],
't': [290, 296],
'p0': [90_000, 110_000],
't0': [340, 360],

})

# Randomize design
FacDesign = FacDesign.sample(frac=1).reset_index(drop=True)

# Setup and run simulator with five replicates
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# for each combination of factors
simulator = mistat.PistonSimulator(n_replicate=100, **FacDesign)
result = simulator.simulate()
factors = ['m', 's', 'v0', 'k', 't', 'p0', 't0']
result = result.groupby(factors, as_index=False).agg({'seconds': ['mean', 'std']})
result.columns = [*factors, 'mean', 'std']
result['SN'] = 10 * np.log10(result['mean']**2 / result['std']**2 - 1/100)

The regression analysis of SN on the seven factors (only main effects) results in.

model = smf.ols('SN ˜ m + s + k + t + v0 + p0 + t0', data=result).fit()
print(model.summary2())

Results: Ordinary least squares
=================================================================
Model: OLS Adj. R-squared: 0.899
Dependent Variable: SN AIC: 522.9904
Date: 2023-04-24 23:25 BIC: 545.8067
No. Observations: 128 Log-Likelihood: -253.50
Df Model: 7 F-statistic: 163.3
Df Residuals: 120 Prob (F-statistic): 3.28e-58
R-squared: 0.905 Scale: 3.2790
-----------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
-----------------------------------------------------------------
Intercept 5.0686 16.6968 0.3036 0.7620 -27.9899 38.1271
m -0.0094 0.0107 -0.8845 0.3782 -0.0306 0.0117
s 484.4714 21.3403 22.7021 0.0000 442.2191 526.7238
k 0.0001 0.0001 0.5709 0.5691 -0.0002 0.0003
t 0.0012 0.0534 0.0217 0.9827 -0.1045 0.1068
v0 1001.1879 40.0131 25.0215 0.0000 921.9647 1080.4112
p0 -0.0000 0.0000 -0.2122 0.8323 -0.0000 0.0000
t0 -0.0095 0.0160 -0.5949 0.5530 -0.0412 0.0222
-----------------------------------------------------------------
Omnibus: 10.591 Durbin-Watson: 0.520
Prob(Omnibus): 0.005 Jarque-Bera (JB): 4.418
Skew: -0.164 Prob(JB): 0.110
Kurtosis: 2.151 Condition No.: 25136579
=================================================================

* The condition number is large (3e+07). This might indicate
strong multicollinearity or other numerical problems.

We see that only factors 𝑠 and 𝑣0 (piston surface area, initial gas volume) have a
significant effect. The 𝑅2 is only 90.5%. Adding to the regression equation the first
order interactions between 𝑠 and 𝑣0, we get

model = smf.ols('SN ˜ s + v0 + s*v0', data=result).fit()
print(model.summary2())

Results: Ordinary least squares
===================================================================
Model: OLS Adj. R-squared: 0.964
Dependent Variable: SN AIC: 388.4606
Date: 2023-04-24 23:25 BIC: 399.8687
No. Observations: 128 Log-Likelihood: -190.23
Df Model: 3 F-statistic: 1128.
Df Residuals: 124 Prob (F-statistic): 8.90e-90
R-squared: 0.965 Scale: 1.1808
-------------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
-------------------------------------------------------------------
Intercept 5.0013 0.3365 14.8604 0.0000 4.3351 5.6674
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s 203.8500 23.0871 8.8296 0.0000 158.1541 249.5459
v0 416.5600 46.6710 8.9254 0.0000 324.1849 508.9350
s:v0 46770.2389 3201.6068 14.6084 0.0000 40433.3622 53107.1157
-------------------------------------------------------------------
Omnibus: 0.674 Durbin-Watson: 1.053
Prob(Omnibus): 0.714 Jarque-Bera (JB): 0.303
Skew: -0.032 Prob(JB): 0.859
Kurtosis: 3.229 Condition No.: 33340
===================================================================

* The condition number is large (3e+04). This might indicate
strong multicollinearity or other numerical problems.

We see that the added interaction 𝑠∗𝑣0 is very significant. The regression equation
with the interaction terms predicts the SN better, 𝑅2 = 96.5%.

Exercise 6.3 Let (𝑋1, 𝑋2) have joint distribution with means (b1, b2) and covariance
matrix

𝑉 =

(
𝜎2

1 𝜎12
𝜎12 𝜎

2
2

)
.

Find approximations to the expected values and variances of:

(i) 𝑌 = 𝑋1/𝑋2.
(ii) 𝑌 = log(𝑋2

1/𝑋
2
2 ).

(iii) 𝑌 = (𝑋2
1 + 𝑋2

2 )
1/2.

Solution 6.3 The approximations to the expected values and variances are as follows:
(i)

𝐸

{
𝑋1
𝑋2

}
≈ b1
b2

− 𝜎12
1
b2

2
+ 𝜎2

2
b1

b3
2

𝑉

{
𝑋1
𝑋2

}
≈
𝜎2

1

b2
2
+ 𝜎2

2
b2

1

b4
2
− 2𝜎12

b1

b3
2

(ii)

𝐸

{
log

𝑋2
1

𝑋2
2

}
≈ log

(
b1
b2

)2
−
𝜎2

1

b2
1
+
𝜎2

2

b2
2

𝑉

{
log

(
𝑋1
𝑋2

)2
}
≈

4𝜎2
1

b2
1

+
4𝜎2

2

b2
2

− 8
𝜎12
b1b2

.

(iii)
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𝐸{(𝑋2
1 + 𝑋2

2 )
1/2} ≈ (b2

1 + b2
2)

1/2 +
𝜎2

1

2(b2
1 + b2

2)1/2

(
1 −

b2
1

b2
1 + b2

2

)
+

𝜎2
2

2(b2
1 + b2

2)1/2

(
1 −

b2
2

b2
1 + b2

2

)
− 𝜎12b1b2

(b2
1 + b2

2)3/2
;

𝑉{(𝑋2
1 + 𝑋2

2 )
1/2} ≈

𝜎2
1 b

2
1

(b2
1 + b2

2)
+

𝜎2
2 b

2
2

(b2
1 + b2

2)
+ 2

𝜎12b1b2

(b2
1 + b2

2)
.

Exercise 6.4 The relationship between the absorption ratio 𝑌 of a solid image in a
copied paper and the light intensity 𝑋 is given by the function

𝑌 = 0.0782 + 0.90258
1 + 0.6969𝑋−1.4258 .

Assuming that 𝑋 has the gamma distribution 𝐺 (1, 1.5), approximate the expected
value and variance of 𝑌 .

Solution 6.4 Approximation formulas yield: 𝐸{𝑌 } ≈ 0.5159 and 𝑉{𝑌 } ≈ 0.06762.
Simulation with 5000 runs yields the estimates 𝐸{𝑌 } ≈ 0.6089, 𝑉{𝑌 } ≈ 0.05159.
The first approximation of 𝐸{𝑌 } is significantly lower than the simulation estimate.

Exercise 6.5 Let �̄�𝑛 and 𝑆2
𝑛 be the mean and variance of a random sample of size

𝑛 from a normal distribution 𝑁 (`, 𝜎). We know that �̄�𝑛 and 𝑆2
𝑛 are independent,

�̄�𝑛 ∼ 𝑁

(
`, 𝜎√

𝑛

)
and 𝑆2

𝑛 ∼ 𝜎2

𝑛−1 𝜒
2 [𝑛 − 1]. Find an approximation to the expected

value and variance of 𝑌 = log
(
�̄�2
𝑛

𝑆2
𝑛

)
.

Solution 6.5 We have that 𝐸{�̄�𝑛} = `, 𝑉{�̄�𝑛} = 𝜎2

𝑛
, 𝐸{𝑆2

𝑛} = 𝜎2 and 𝑉{𝑆2
𝑛} =

2𝜎4

𝑛−1 . The first and second order partial derivatives of 𝑓 (`, 𝜎2) = 2 log(`) − log(𝜎2)
are

𝜕

𝜕`
𝑓 =

2
`
,

𝜕

𝜕𝜎2 𝑓 = − 1
𝜎2 ,

𝜕2

𝜕`𝜕𝜎2 𝑓 = 0,
𝜕2

𝜕`2 𝑓 = − 2
`2 and

𝜕2

𝜕 (𝜎2)2 𝑓 =
1
𝜎4 .

Thus the approximations to the expected value and variance of 𝑌 = log
(
�̄�2
𝑛

𝑆2
𝑛

)
are

𝐸

{
log

(
�̄�2
𝑛

𝑆2
𝑛

)}
≈ log

(
`2

𝜎2

)
− 𝜎2

𝑛`2 + 1
𝑛 − 1

and

𝑉

{
log

(
�̄�2
𝑛

𝑆2
𝑛

)}
≈ 4𝜎2

𝑛`2 + 2
𝑛 − 1

.
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Table 6.1: Results of experiment based on 𝐿18 orthogonal array

Factors

Run 1 2 3 4 5 6 7 8 �̄� 𝑆

1 1 1 1 1 1 1 1 1 2.500 0.0827
2 1 1 2 2 2 2 2 2 2.684 0.1196
3 1 1 3 3 3 3 3 3 2.660 0.1722
4 1 2 1 1 2 2 3 3 1.962 0.1696
5 1 2 2 2 3 3 1 1 1.870 0.1168
6 1 2 3 3 1 1 2 2 2.584 0.1106
7 1 3 1 2 1 3 2 3 2.032 0.0718
8 1 3 2 3 2 1 3 1 3.267 0.2101
9 1 3 3 1 3 2 1 2 2.829 0.1516

10 2 1 1 3 3 2 2 1 2.660 0.1912
11 2 1 2 1 1 3 3 2 3.166 0.0674
12 2 1 3 2 2 1 1 3 3.323 0.1274
13 2 2 1 2 3 1 3 2 2.576 0.0850
14 2 2 2 3 1 2 1 3 2.308 0.0964
15 2 2 3 1 2 3 2 1 2.464 0.0385
16 2 3 1 3 2 3 1 2 2.667 0.0706
17 2 3 2 1 3 1 2 3 3.156 0.1569
18 2 3 3 2 1 2 3 1 3.494 0.0473

Exercise 6.6 An experiment based on an 𝐿18 orthogonal array involving eight factors
gave the results listed in Table 6.1 (see Phadke et al., 1983). Each run had 𝑛 = 5
replications.

Analyze the effects of the factors of the SN ratio [ = log( �̄�/𝑆).

Solution 6.6 First, create the data frame.

df = pd.DataFrame([
[1, 1, 1, 1, 1, 1, 1, 1, 2.5, 0.0827],
[1, 1, 2, 2, 2, 2, 2, 2, 2.684, 0.1196],
[1, 1, 3, 3, 3, 3, 3, 3, 2.66, 0.1722],
[1, 2, 1, 1, 2, 2, 3, 3, 1.962, 0.1696],
[1, 2, 2, 2, 3, 3, 1, 1, 1.87, 0.1168],
[1, 2, 3, 3, 1, 1, 2, 2, 2.584, 0.1106],
[1, 3, 1, 2, 1, 3, 2, 3, 2.032, 0.0718],
[1, 3, 2, 3, 2, 1, 3, 1, 3.267, 0.2101],
[1, 3, 3, 1, 3, 2, 1, 2, 2.829, 0.1516],
[2, 1, 1, 3, 3, 2, 2, 1, 2.66, 0.1912],
[2, 1, 2, 1, 1, 3, 3, 2, 3.166, 0.0674],
[2, 1, 3, 2, 2, 1, 1, 3, 3.323, 0.1274],
[2, 2, 1, 2, 3, 1, 3, 2, 2.576, 0.085],
[2, 2, 2, 3, 1, 2, 1, 3, 2.308, 0.0964],
[2, 2, 3, 1, 2, 3, 2, 1, 2.464, 0.0385],
[2, 3, 1, 3, 2, 3, 1, 2, 2.667, 0.0706],
[2, 3, 2, 1, 3, 1, 2, 3, 3.156, 0.1569],
[2, 3, 3, 2, 1, 2, 3, 1, 3.494, 0.0473],

], columns=['F1', 'F2', 'F3', 'F4', 'F5',
'F6', 'F7', 'F8', 'Xbar', 'S'])

Transform the factors to [-1, 1] for factor 1 and to [-1, 0, 1] for the remaining
factors. Calculate the ratio.
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df['F1'] = (df['F1']-1)*2-1
for column in ['F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8']:

df[column] = df[column] - 2
df['SNR'] = np.log(df['Xbar'] / df['S'])

Perform a regression analysis taking only the linear effects into account.

model = smf.ols('SNR ˜ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8', data=df).fit()

Regression analysis yields the following:

print(model.summary2().tables[1].round(5))

Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept 3.22601 0.07518 42.90997 0.00000 3.05594 3.39608
F1 0.26565 0.07518 3.53348 0.00638 0.09558 0.43572
F2 0.07900 0.09208 0.85797 0.41317 -0.12929 0.28729
F3 0.13848 0.09208 1.50392 0.16686 -0.06982 0.34677
F4 -0.14339 0.09208 -1.55733 0.15382 -0.35169 0.06490
F5 -0.31231 0.09208 -3.39185 0.00798 -0.52061 -0.10402
F6 0.12630 0.09208 1.37164 0.20340 -0.08200 0.33459
F7 0.02632 0.09208 0.28587 0.78145 -0.18197 0.23462
F8 -0.17109 0.09208 -1.85810 0.09610 -0.37938 0.03720

The linear effects of F1, F5, and F8 are significant. There might be significant
interactions or quadratic effects.

Exercise 6.7 Using PistonSimulation, perform a full factorial (27), a 1/8 (27−3), 1/4
(27−2), and 1/2 (27−1) fractional replications of the cycle time experiment. Estimate
the main effects of the seven factors with respect to 𝑆𝑁 = log( �̄�/𝑆) and compare the
results obtained from these experiments. Use 𝑛 = 5 replicates for each combination
of factors.

Solution 6.7 Use the generators from Table 5.29 to create the different designs.

generators = {
'2_7': 'A B C D E F G',
'2_7_1': 'A B C D E F G ABCDEFG',
'2_7_2': 'A B C D E F G ABCDF ABDEG',
'2_7_3': 'A B C D E F G ABCE BCDF ACDG',

}

Create the designs using the pyDOE2 function fracfact

designs = {}
for name, generator in generators.items():
designs[name] = pd.DataFrame(fracfact(generator), columns=generator.split())

# reduce the fractional factorial designs to a single block
designs['2_7_1'] = designs['2_7_1'].query('ABCDEFG == 1')
designs['2_7_2'] = designs['2_7_2'].query('ABCDF == 1 & ABDEG == 1')
designs['2_7_3'] = designs['2_7_3'].query('ABCE == 1 & BCDF == 1 & ACDG == 1')

The function fracfact returns a design matrix with values (−1, 1). We need to
map these to the actual factor levels.
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FacLevels = {
'm': [30, 60],
's': [0.005, 0.02],
'v0': [0.002, 0.01],
'k': [1500, 4500],
't': [290, 296],
'p0': [90_000, 110_000],
't0': [340, 360],

}
FacMap = {'A': 'm', 'B': 's', 'C': 'v0', 'D': 'k',

'E': 't', 'F': 'p0', 'G': 't0'}

for name, design in designs.items():
# replace (-1, 1) with factor levels
facDesign = {}
for colname in design:

if colname not in FacMap: # skip generators
continue

factor = FacMap[colname]
levels = FacLevels[factor]
facDesign[factor] = [levels[max(0, int(v))] for v in design[colname]]

designs[name] = pd.DataFrame(facDesign)

For each design execute the PistonSimulation with 5 replicates and determine the
SN ratio.

results = {}
for name, design in designs.items():

np.random.seed(1)
# Setup and run simulator
simulator = mistat.PistonSimulator(n_replicate=5, **design)
result = simulator.simulate()
factors = list(FacLevels)
result = result.groupby(factors, as_index=False).agg({'seconds': ['mean', 'std']})
result.columns = [*factors, 'mean', 'std']
result['SN'] = np.log10(result['mean']**2 / result['std']**2)
results[name] = result

Build linear regression models to estimate the main effects.

models = {}
for name, result in results.items():

model = smf.ols('mean ˜ m + s + k + t + v0 + p0 + t0', data=result).fit()
models[name] = model

We can now look at the effect of the design on model performance metrics:

for name, model in models.items():
print(f'{name:10s}: r2={model.rsquared:.3f}, r2_adj={model.rsquared_adj:.3f}')

2_7 : r2=0.769, r2_adj=0.755
2_7_1 : r2=0.777, r2_adj=0.749
2_7_2 : r2=0.765, r2_adj=0.697
2_7_3 : r2=0.788, r2_adj=0.602

While the 𝑟2 metric stays basically the same for all four designs, the adjusted 𝑟2

drops with the size of the design from the full to the 1/8 factorial.
We see a similar effect on the signficance levels and the confidence intervals of

the parameter estimates.
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for name, model in models.items():
print(name)
print(model.summary2().tables[1].round(4))

2_7
Coef. Std.Err. t P>|t| [0.025 0.975]

Intercept 0.2183 0.4116 0.5304 0.5968 -0.5967 1.0333
m 0.0005 0.0003 2.0359 0.0440 0.0000 0.0011
s -6.8075 0.5261 -12.9393 0.0000 -7.8492 -5.7658
k 0.0000 0.0000 1.6946 0.0927 -0.0000 0.0000
t -0.0004 0.0013 -0.3135 0.7544 -0.0030 0.0022
v0 14.7097 0.9865 14.9116 0.0000 12.7566 16.6628
p0 -0.0000 0.0000 -1.3802 0.1701 -0.0000 0.0000
t0 -0.0000 0.0004 -0.0287 0.9771 -0.0008 0.0008
2_7_1

Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept -0.1876 0.5760 -0.3257 0.7458 -1.3416 0.9663
m 0.0006 0.0004 1.6551 0.1035 -0.0001 0.0013
s -6.5822 0.7362 -8.9401 0.0000 -8.0571 -5.1073
k 0.0000 0.0000 1.0515 0.2975 -0.0000 0.0000
t 0.0006 0.0018 0.3090 0.7585 -0.0031 0.0043
v0 14.4861 1.3805 10.4936 0.0000 11.7207 17.2515
p0 -0.0000 0.0000 -0.7496 0.4566 -0.0000 0.0000
t0 0.0003 0.0006 0.5019 0.6177 -0.0008 0.0014
2_7_2

Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept 0.3676 0.9370 0.3923 0.6983 -1.5663 2.3014
m 0.0005 0.0006 0.7528 0.4589 -0.0008 0.0017
s -6.8111 1.1976 -5.6874 0.0000 -9.2828 -4.3394
k 0.0000 0.0000 0.4662 0.6453 -0.0000 0.0000
t -0.0014 0.0030 -0.4713 0.6417 -0.0076 0.0048
v0 14.9546 2.2454 6.6600 0.0000 10.3202 19.5890
p0 -0.0000 0.0000 -0.5629 0.5787 -0.0000 0.0000
t0 0.0004 0.0009 0.4529 0.6547 -0.0014 0.0023
2_7_3

Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept 0.1662 1.4378 0.1156 0.9108 -3.1494 3.4818
m 0.0003 0.0009 0.3306 0.7494 -0.0018 0.0024
s -6.3784 1.8377 -3.4709 0.0084 -10.6161 -2.1407
k 0.0000 0.0000 0.4130 0.6905 -0.0000 0.0000
t -0.0005 0.0046 -0.1158 0.9107 -0.0111 0.0101
v0 14.3326 3.4457 4.1596 0.0032 6.3869 22.2784
p0 -0.0000 0.0000 -0.1167 0.9100 -0.0000 0.0000
t0 0.0001 0.0014 0.1067 0.9177 -0.0030 0.0033
/usr/local/lib/python3.9/site-packages/scipy/stats/_stats_py.py:1477:
UserWarning: kurtosistest only valid for n>=20 ... continuing anyway,
n=16

warnings.warn("kurtosistest only valid for n>=20 ... continuing "

The p-values and the width of the confidence intervals increase with decreasing
size of the design.

Exercise 6.8 To see the effect of the variances of the random variables on the ex-
pected response, in non-linear cases, execute PistonSimulation, with 𝑛 = 20 repli-
cates, and compare the output means to the values in Exercise 6.7.

Solution 6.8 We execute PistonSimulation setting n replicate=20

results = {}
for name, design in designs.items():

np.random.seed(1)
# Setup and run simulator
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simulator = mistat.PistonSimulator(n_replicate=20, **design)
result = simulator.simulate()
factors = list(FacLevels)
result = result.groupby(factors, as_index=False).agg({'seconds': ['mean', 'std']})
result.columns = [*factors, 'mean', 'std']
result['SN'] = np.log10(result['mean']**2 / result['std']**2)
results[name] = result

models = {}
for name, result in results.items():

model = smf.ols('mean ˜ m + s + k + t + v0 + p0 + t0', data=result).fit()
models[name] = model

The 𝑟2 and adjusted 𝑟2 values follow a similar pattern as seen for 5 replicates. There
are only small differences between the two experiments and there is no consistent
pattern of change between 5 and 20 replicates.

for name, model in models.items():
print(f'{name:10s}: r2={model.rsquared:.3f}, r2_adj={model.rsquared_adj:.3f}')

2_7 : r2=0.779, r2_adj=0.766
2_7_1 : r2=0.783, r2_adj=0.756
2_7_2 : r2=0.763, r2_adj=0.694
2_7_3 : r2=0.782, r2_adj=0.591

The same can be said for significance level and confidence intervals of the coef-
ficients.

for name, model in models.items():
print(name)
print(model.summary2().tables[1].round(4))

2_7
Coef. Std.Err. t P>|t| [0.025 0.975]

Intercept 0.1066 0.3973 0.2683 0.7889 -0.6801 0.8933
m 0.0005 0.0003 1.9699 0.0512 -0.0000 0.0010
s -6.6914 0.5078 -13.1767 0.0000 -7.6969 -5.6860
k 0.0000 0.0000 1.7975 0.0748 -0.0000 0.0000
t -0.0001 0.0013 -0.1135 0.9098 -0.0027 0.0024
v0 14.7902 0.9522 15.5333 0.0000 12.9050 16.6755
p0 -0.0000 0.0000 -0.8957 0.3722 -0.0000 0.0000
t0 0.0000 0.0004 0.0556 0.9558 -0.0007 0.0008
2_7_1

Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept 0.0030 0.5779 0.0052 0.9959 -1.1546 1.1606
m 0.0005 0.0004 1.4791 0.1447 -0.0002 0.0013
s -6.7291 0.7386 -9.1106 0.0000 -8.2087 -5.2495
k 0.0000 0.0000 1.0502 0.2981 -0.0000 0.0000
t 0.0002 0.0018 0.1016 0.9194 -0.0035 0.0039
v0 14.8995 1.3849 10.7588 0.0000 12.1253 17.6737
p0 -0.0000 0.0000 -0.5409 0.5907 -0.0000 0.0000
t0 0.0000 0.0006 0.0506 0.9598 -0.0011 0.0011
2_7_2

Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept 0.1544 0.9575 0.1613 0.8732 -1.8217 2.1306
m 0.0005 0.0006 0.8712 0.3923 -0.0007 0.0018
s -6.9223 1.2238 -5.6566 0.0000 -9.4480 -4.3966
k 0.0000 0.0000 0.7248 0.4756 -0.0000 0.0000
t -0.0002 0.0031 -0.0812 0.9360 -0.0066 0.0061
v0 15.1003 2.2946 6.5809 0.0000 10.3646 19.8361
p0 -0.0000 0.0000 -0.9230 0.3652 -0.0000 0.0000
t0 0.0001 0.0009 0.1316 0.8964 -0.0018 0.0020
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2_7_3
Coef. Std.Err. t P>|t| [0.025 0.975]

Intercept 0.6279 1.6093 0.3902 0.7066 -3.0832 4.3391
m 0.0006 0.0010 0.5371 0.6058 -0.0018 0.0029
s -7.1112 2.0569 -3.4572 0.0086 -11.8544 -2.3679
k 0.0000 0.0000 0.3975 0.7014 -0.0000 0.0000
t -0.0022 0.0051 -0.4281 0.6798 -0.0141 0.0097
v0 15.4170 3.8567 3.9975 0.0040 6.5235 24.3105
p0 -0.0000 0.0000 -0.2387 0.8173 -0.0000 0.0000
t0 0.0003 0.0015 0.1761 0.8646 -0.0033 0.0038
/usr/local/lib/python3.9/site-packages/scipy/stats/_stats_py.py:1477:
UserWarning: kurtosistest only valid for n>=20 ... continuing anyway,
n=16

warnings.warn("kurtosistest only valid for n>=20 ... continuing "

Exercise 6.9 Run PowerCircuitSimulation with 1% and 2% tolerances, and compare
the results to those of Table 6.13.

Solution 6.9 Repeat the simulation from Example 6.5 with tolerances of 1% and
2%.

tolerances = [f'tl{c}' for c in 'ABCDEFGHIJKLM']
factors = {tl: [1, 2] for tl in tolerances}
Design = doe.frac_fact_res(factors, 4)

# Randomize and create replicates
nrepeat = 100
Design = Design.sample(frac=1).reset_index(drop=True)
Design = Design.loc[Design.index.repeat(nrepeat)].reset_index(drop=True)

# Run simulation
simulator = mistat.PowerCircuitSimulation(**{k: list(Design[k]) for k in Design})
result = simulator.simulate()
result = mistat.simulationGroup(result, nrepeat)

# Combine results with the Design matrix
Design['response'] = result['volts']
Design['group'] = result['group']

# calculate mean, standard deviation, and MSE
def groupAggregation(g):

return {
'mean': g['response'].mean(),
'std': g['response'].std(),
'MSE': g['response'].var(ddof=0),

}
results = pd.DataFrame(list(Design.groupby('group').apply(groupAggregation)))
results

mean std MSE
0 230.156267 0.966150 0.924111
1 230.092224 1.254120 1.557088
2 229.957027 1.013553 1.017016
3 230.169616 1.037447 1.065534
4 229.898480 1.041472 1.073818
5 230.005033 1.280572 1.623467
6 230.075389 1.280411 1.623059
7 230.089210 0.725727 0.521414
8 229.990264 0.951721 0.896714
9 230.126760 1.346345 1.794518
10 230.107421 1.125018 1.253009
11 229.861824 1.396280 1.930103
12 229.950664 1.162393 1.337646
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13 230.016845 1.321987 1.730174
14 230.015692 1.188564 1.398558
15 230.000549 1.435997 2.041467
16 230.147138 1.060209 1.112802
17 230.006373 1.351617 1.808599
18 229.966871 1.225543 1.486937
19 230.257130 1.343611 1.787238
20 229.972538 0.799752 0.633208
21 230.113127 1.075547 1.145234
22 230.089659 0.989811 0.969929
23 230.165592 1.275611 1.610911
24 229.945301 0.944878 0.883867
25 230.117853 1.106905 1.212985
26 229.924627 1.236313 1.513184
27 230.131634 0.935886 0.867123
28 229.963843 1.176523 1.370365
29 229.938556 1.063175 1.119038
30 230.047874 0.998668 0.987364
31 230.011064 1.150356 1.310086

Comparing this table to Table 6.13 in the text, we see that by reducing the
tolerances to 1% and 2%, the MSE is reduced by a factor of 25. This, however,
increases the cost of the product.





Chapter 7
Computer Experiments

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import random
import numpy as np
import pandas as pd
from scipy import stats
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error
import pylibkriging as lk
import mistat

Exercise 7.1 The birthday problem states that if there are more than 22 people at
a birthday party, the probability that at least two people have the same birthday is
greater than 0.5. Write a Python program to simulate this problem. Show that if there
are more than 22 people in the party, the probability is greater than 1/2 that at least
2 will have birthdays on the same day.

Solution 7.1 In Python:

nrepeat = 10000
days = 365
for size in (22, 23): # range(1, 365+1):
same_birthday = 0
for _ in range(nrepeat):

birthdays = stats.randint.rvs(1, 365+1, size=size)
if len(birthdays) != len(set(birthdays)):

same_birthday += 1
print(f'size of party: {size}, ',

f'p(same birthday) {same_birthday / nrepeat:.2f}')

size of party: 22, p(same birthday) 0.47
size of party: 23, p(same birthday) 0.50

99

https://gedeck.github.io/mistat-code-solutions/IndustrialStatistics/
https://gedeck.github.io/mistat-code-solutions/IndustrialStatistics/
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Exercise 7.2 The Deming funnel experiment was designed to show that an inappro-
priate reaction to common cause variation will make matters worse. Common cause
and special causes affecting processes over time have been discussed in Chaps. 2 to
4.

In the actual demonstration, a funnel is placed above a circular target. The ob-
jective is to drop a marble through the funnel as close to the target as possible. A
pen or pencil is used to mark the spot where the marble actually hits. Usually, 20
or more drops are performed in order to establish the pattern and extent of variation
about the target. The funnel represents common causes affecting a system. Despite
the operator’s best efforts, the marble will not land exactly on the target each time.
The operator can react to this variability in one of four ways:

1. Do not move the funnel.
2. Measure the distance the hit is from the target and move the funnel an equal

distance, but in the opposite direction (error relative to the previous position).
3. Measure the distance the hit is from the target and move the funnel this distance

in the opposite direction, starting at the target (error relative to the target).
4. Move the funnel to be exactly over the location of the last hit.

Use Python to compare these four strategies using simulation data.

Solution 7.2 We first define a function that simulates the experiment. The marbel
will drop close to the drop position with a deviation that has a bivariate normal
distribution. As the scale is not defined, we set the standard deviation to 1. The target
is positioned at (0, 0).

def funnel_drop(position):
''' based on funnel position, returns marble drop position'''
x_new = position[0] + stats.norm().rvs()
y_new = position[1] + stats.norm().rvs()
return np.array([x_new, y_new])

def result(strategy, dropped):
''' returns result information '''
return {

'strategy': strategy,
'x': dropped[0],
'y': dropped[1],
'distance': np.sqrt(dropped[0]**2 + dropped[1]**2),

}

Next we simulate the funnel drop experiment for different strategies. See Fig. 7.1
for a visualization of the simulation results.

np.random.seed(1)
results = []
nrepeat = 100

# strategy 1
# funnel fixed
position = (0, 0)
for _ in range(nrepeat):
dropped = funnel_drop(position)
results.append(result(1, dropped))
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# strategy 2
# position funnel to compensate for error relative to funnel position
position = np.array([0, 0])
for _ in range(nrepeat):
dropped = funnel_drop(position)
results.append(result(2, dropped))
position = position - dropped

# strategy 3
# position funnel to compensate for error relative to target
position = np.array([0, 0])
for _ in range(nrepeat):
dropped = funnel_drop(position)
results.append(result(3, dropped))
position = - dropped

# strategy 4
# position funnel to compensate for error relative to target
position = np.array([0, 0])
for _ in range(nrepeat):
dropped = funnel_drop(position)
results.append(result(4, dropped))
position = dropped

results = pd.DataFrame(results)
g = sns.FacetGrid(results, col='strategy', col_wrap=2)
g.map(sns.scatterplot, 'x', 'y')
plt.show()
sns.boxplot(x='distance', y='strategy', data=results, orient='h')
#g = sns.FacetGrid(results, col='strategy')
#g.map(sns.boxplot, 'distance', order='strategy', orient='v')
plt.show()

The result of the simulation shows that strategy 1, no interference, leads to results
closest to the target. Strategy 2 still creates results close to the target, but with a
larger deviation. Strategies 3 and 4 lead to results far away from the target.

Exercise 7.3 Design a 50 runs experimental array for running the piston simulator
using different options available in the mistat package:

• Latin hypercube (simple): mistat.design.doe.lhs
• Latin hypercube (space filling): mistat.design.doe.space filling lhs
• Random k-means cluster: mistat.design.doe.random k means
• Maximin reconstruction: mistat.design.doe.maximin
• Halton sequence-based: mistat.design.doe.halton
• Uniform random matrix: mistat.design.doe.uniform random

Compare the results.

Solution 7.3 We first create a series of design using the different methods

from mistat.design import doe

np.random.seed(1) # set random seed for reproducibility
Factors = {

'm': [30, 60],
's': [0.005, 0.02],
'v0': [0.002, 0.01],
'k': [1_000, 5_000],
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Fig. 7.1: Result of funnel drop experiment for the different strategies
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'p0': [90_000, 110_000],
't': [290, 296],
't0': [340, 360],

}
Designs = {

'Latin hypercube': doe.lhs(Factors, num_samples=50),
'Latin hypercube (space filling)': doe.space_filling_lhs(Factors, num_samples=50),
'Random k-means cluster': doe.random_k_means(Factors, num_samples=50),
'Maximin reconstruction': doe.maximin(Factors, num_samples=50),
'Halton sequence based': doe.halton(Factors, num_samples=50),
'Uniform random matrix': doe.uniform_random(Factors, num_samples=50),

}

Next we can visualize each design using the pandas scatterplot matrix method.
We hide axis ticks for clarity.

for method, design in Designs.items():
sm = pd.plotting.scatter_matrix(design, figsize=[4, 4])
# hide all axis labels in visualization
for subaxis in sm:

for ax in subaxis:
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.set_ylabel("")

plt.suptitle(method)
plt.show()

The result is shown in Fig. 7.2. The methods lead to cleary distinct distributions
of the design. The distributions for both Latin hypercube designs, the maximin re-
construction design, and the uniform random matrix design lead to random coverage
of the design space. Looking a the distribution for each factor, both Latin hypercube
designs show the most uniform distributions, while the maximin reconstruction and
uniform random matrix methods lead to a design where factors are not uniformly
explored.

The random 𝑘-means cluster and the Halton sequence based designs are clearly
distinct. The random 𝑘-means cluster method leads to a design that favors the
extreme values for each factor. The Halton sequence based design shows patterns in
the pair-wise scatterplots.

Exercise 7.4 Fit a Gaussian process model to data generated by the six designs listed
in Exercise 7.3 and compare the MSE of the model fits.

Solution 7.4 We run a 5-fold cross-validation using the Kriging model from the
pylibkriging package.

random.seed(1)
np.random.seed(1)

outcome = 'seconds'
predictors = ['m', 's', 'v0', 'k', 'p0', 't', 't0']

performance = []
for method, Design in Designs.items():

# randomize the design and run the piston simulator
DesignRandomized = Design.sample(frac=1, random_state=1).reset_index(drop=True)
simulator = mistat.PistonSimulator(parameter=DesignRandomized)
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Fig. 7.2: Visualizations of different designs
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result = simulator.simulate()

# convert to X and y matrics to use with the
X = result[predictors].values
y = result[outcome].values

# run 5-fold cross-validation to determine MSE values
# we collect the out-of-fold predictions to determine
# the MSE
predicted = []
actual = []
for train_idx, test_idx in KFold(n_splits=5).split(result):

model = lk.Kriging(y[train_idx], X[train_idx], 'gauss')

# predict using the test set
ypred = model.predict(X[test_idx], True, False, False)[0]
# keep prediction results for performance metric calculation
actual.extend(y[test_idx])
predicted.extend(ypred)

mse = mean_squared_error(actual, predicted)
performance.append({

'design': method,
'mse': mse,
'rmse': np.sqrt(mse),

})

The performance results are:
design mse rmse

Latin hypercube 0.00189 0.04348
Latin hypercube (space filling) 0.00036 0.01898
Random k-means cluster 0.00043 0.02074
Maximin reconstruction 0.00042 0.02061
Halton sequence based 0.00121 0.03482
Uniform random matrix 0.00009 0.00931

In all cases, we observe good predictive performance. Due to randomness in the
calculations, the relative order can be different between runs.

Exercise 7.5 Using a uniform random design, generate a stochastic emulator for the
piston simulator in order to get 0.02 seconds cycle time with minimal variability.

Solution 7.5 We first generate the uniform random design

np.random.seed(1)

num_samples = 1000
Design = doe.uniform_random(Factors, num_samples=num_samples)

Run the piston simulator using replicates of each parameter set. As the next
exercise requires the same process, we wrap the required steps into a custom function

def evaluateDesign(Design, nrepeat=20):
#Design = Design.loc[np.repeat(Design.index.values, nrepeat), :]
#settings = {c: list(Design[c]) for c in Design.columns}
#simulator = mistat.PistonSimulator(seed=1, **settings)
simulator = mistat.PistonSimulator(parameter=Design, seed=1, n_replicate=nrepeat)
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result = simulator.simulate()
result = mistat.simulationGroup(result, nrepeat)

# next we aggregate the replicates and determine mean and
# standard deviation of each group.
options = {p: 'mean' for p in ['m', 's', 'v0', 'k', 'p0', 't', 't0']}
options['seconds'] = ['mean', 'std']
result = result.groupby('group').aggregate(options)
# convert multi-index to single index
result.columns = [' '.join(col) if col[0] == 'seconds' else col[0]

for col in result.columns]
return result

result = evaluateDesign(Design, nrepeat=30)

In order to find the parameter set that gives a cycle time around 0.02 with minimal
variability, we filter the results by the mean values and sort by the standard deviation.

# determine rows with seconds around 0.02 and
# identify row with smallest standard deviation
rows = [0.0195 < v < 0.0205 for v in result['seconds mean'].values]
target = result.loc[rows, :]
target = target.sort_values('seconds std')
target.head(3)

m s v0 k p0
t \
group
871 59.694778 0.018177 0.004087 1152.373331 109480.515301
293.342719
331 46.278492 0.018261 0.004200 1432.269941 93825.441035
292.322277
947 37.548930 0.012126 0.003148 1280.072660 105859.307614
291.076845

t0 seconds mean seconds std
group
871 350.794200 0.020356 0.002469
331 357.081196 0.020009 0.002751
947 342.524145 0.019582 0.003092

We can see that all three possible settings lead to a cycle time close to 0.02 seconds
with low variability. The visualization of the results in Fig. 7.3 shows that the settings
with a cycle time around 0.02 can be achieved with different values of the piston
surface area 𝑠 and the initial gas volume 𝑣0. The two variables show correlation.
Only a small number of the design parameters match our criteria. It would be useful
to repeat the similuation with a larger number of samples.

ax = target.plot.scatter(x='v0', y='s')
target.head(3).plot.scatter(x='v0', y='s', ax=ax, color='red')
ax = target.plot.scatter(x='seconds mean', y='seconds std')
target.head(3).plot.scatter(x='seconds mean', y='seconds std', ax=ax, color='red')
plt.show()

Exercise 7.6 Using a Latin hypercube design, generate a stochastic emulator for the
piston simulator in order to achieve 0.02 seconds cycle time with minimal variability.
Compare your results to what you got in Exercise 7.5.
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Fig. 7.3: Visualization of results from stochastic emulator based on random uniform
design.

Solution 7.6 We can make use of the function defined in the previous exercise to
evaluate a Latin hyper cube design

np.random.seed(1)

num_samples = 1000
Design = doe.lhs(Factors, num_samples=num_samples, random_state=1)
result = evaluateDesign(Design, nrepeat=30)

# determine rows with seconds around 0.02 and
# identify row with smallest standard deviation
rows = [0.0195 < v < 0.0205 for v in result['seconds mean'].values]
target = result.loc[rows, :]
target = target.sort_values('seconds std')
target.head(3)

m s v0 k p0
t \
group
368 33.166208 0.016760 0.003876 2998.808445 96800.530567
291.237264
940 39.401808 0.019256 0.004388 3024.658005 97630.295509
295.393884
150 33.434638 0.019884 0.004685 1401.296554 92707.973181
292.463943

t0 seconds mean seconds std
group
368 341.684282 0.020127 0.001956
940 351.093709 0.020001 0.002313
150 353.536655 0.020030 0.002467

The results derived using this design are similar to what was obtained in Exer-
cise 7.5. We can see more points matching our criteria. This could be due to a better
coverage of the design space. However, as already mentioned in Exercise 7.5, we
could improve the analysis by increasing the number of design points.

ax = target.plot.scatter(x='v0', y='s')
target.head(3).plot.scatter(x='v0', y='s', ax=ax, color='red')
ax = target.plot.scatter(x='seconds mean', y='seconds std')
target.head(3).plot.scatter(x='seconds mean', y='seconds std', ax=ax, color='red')
plt.show()
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Fig. 7.4: Visualization of results from stochastic emulator based on a Latin hyper-
square design



Chapter 8
Cybermanufacturing and digital twins

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.formula.api as smf
import lifelines
import pingouin as pg
import seaborn as sns
import matplotlib.pyplot as plt
import mistat
from statsmodels.tsa.api import SARIMAX
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score

Exercise 8.1 The PENSIM simulation software modelling penicillin production
(Birol et al., 2002) is a fed-batch fermentor.1 It simulates a fed-batch penicillin
production process and includes variables such as pH, temperature, aeration rate,
agitation power, feed flow rate of the substrate and a Raman probe.

The PENSIM 100 dataset consists of 100 observations derived from the simula-
tor. These are observational data collected under the same process set up. Variability
in responses is induced by the varying process variables

A. Process set up:

1. S0: initial sugar concentration (15 g/L)
2. X0: initial biomass concentration (0.1 g/L)
3. pH: pH set point (5)
4. T: temperature set point (298 °K)
5. air: aeration (8.6 L/min)
6. stirring: agitation rate (29.9 W)

1 http://www.industrialpenicillinsimulation.com.
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7. time: culture time (350 h)
8. feed: sugar feed rate (0.0426 L/h)

B. Process outputs:

1. P: Final penicillin concentration
2. X: Final biomass concentration

C. Process variables:

1. Fg: aeration rate
2. RPM: agitation rate
3. Fs: subst. feed
4. Ts: subst. temp.
5. S: substrate
6. DO: dissolved oxygen
7. Uvis: viscosity
8. CO2: off-gas CO2
9. Hi: heat inflow

10. Ti: temperature inflow
11. Ho: heat outflow
12. Fw: water for injection

Predict the process outputs P and X from the 12 process variables using two
different models. Compare and contrast the models.

Some options are multivariate least square regressions, regression trees, random
forests and neural networks, Bayesian networks (Chaps. 4, 7, and 8 in Kenett et al.
2022b), response surfaces (Chap. 5) and Kriging (Gaussian) models (Chap. 7).

Solution 8.1 We train and evaluate linear regression and random forest regression
models.

Load and preprocess the data in Python.

pensim_100 = mistat.load_data('PENSIM_100')
predictors = ['Fg', 'RPM', 'Fs', 'Ts', 'S', 'DO', 'Uvis',

'CO2', 'Hi', 'Ti', 'Ho', 'Fw']
outcome_X = 'X'
outcome_P = 'P'

sns.heatmap(pensim_100.corr(), vmin=-1, vmax=1,
cmap=sns.diverging_palette(20, 220, as_cmap=True))

<Axes: >

fig, axes = plt.subplots(ncols=2, figsize=[6, 3])
pensim_100['X'].plot.density(bw_method=0.01, ax=axes[0])
axes[0].set_xlabel('X')
pensim_100['P'].plot.density(bw_method=0.01, ax=axes[1])
axes[1].set_xlabel('P')
plt.tight_layout()
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Fig. 8.1: Heatmap visualization of correlation matrix of the PENSIM 100.csv
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Fig. 8.2: Density plot visualization of the distribution of outcome variables of the
PENSIM 100.csv dataset

Fig. 8.1 visualizes the correlation matrix of the dataset. Most predictors are highly
correlated to both X and P. Exceptions are Fg, RPM, Fs, Ts, and Hi. Closer inspection
however reveals that this correlation is due to the bimodal nature of several of the
descriptors (see Fig. 8.2). Due to this high correlation it is better to use MAE or
RMSE to evaluate the models instead of the correlation coefficient.

In the following, we evaluate linear regression and random forest regression
models to predict X using 5-fold cross-validation with MAE as the score.

X = pensim_100[predictors]
y = pensim_100[outcome_X]
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model = LinearRegression()
scores = cross_val_score(model, X, y, cv=5, scoring='neg_mean_absolute_error')
print(f'Linear regression : {np.mean(-scores):.5f}')

model = RandomForestRegressor()
scores = cross_val_score(model, X, y, cv=5, scoring='neg_mean_absolute_error')
print(f'Random forest regression : {np.mean(-scores):.5f}')

Linear regression : 0.00107
Random forest regression : 0.01087

The cross-validation result shows that the linear regression model performs dras-
tically better than the random forest model.

We repeat the same for P.

X = pensim_100[predictors]
y = pensim_100[outcome_P]

model = LinearRegression()
scores = cross_val_score(model, X, y, cv=5, scoring='neg_mean_absolute_error')
print(f'Linear regression : {np.mean(-scores):.5f}')

model = RandomForestRegressor()
scores = cross_val_score(model, X, y, cv=5, scoring='neg_mean_absolute_error')
print(f'Random forest regression : {np.mean(-scores):.5f}')

Linear regression : 0.00716
Random forest regression : 0.00994

In this case, both model have similar performance metrics with the linear regres-
sion model being slightly better.

Exercise 8.2 The PENSIM simulator introduced in Exercise 8.1 has been used to
design and analyze a central composite design experiment (see Sect. 5.9). The dataset
is available as PENSIM CCD.csv.

1. Evaluate the experimental design set up (see Sect. 5.10)
2. Fit a second order response surface model to both X and P (see Sect. 5.9)
3. Compose a qualitative description of the models

Solution 8.2 Load the PENSIM CDD.csv dataset.

data = mistat.load_data('PENSIM_CCD.csv')
predictors = ['S0', 'pH', 'time', 'feed']

(1) Using the code from Sect. 5.10, we create the correlation plot and the fraction
of design space plot shown in Fig. 8.3. The correlation plot shows that the design
allows estimating all main effects and two-way interactions.

def plotCorrelation(design, mod=0, ax=None):
mm = mistat.getModelMatrix(design, mod=mod)
mm = mm.drop(columns='Intercept')
corr = mm.corr().abs()
if ax is None:

fig, ax = plt.subplots()
fig.set_size_inches(11, 7)
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Fig. 8.3: Graphical evaluation of the experimental design setup in dataset PEN-
SIM CDD.csv

sns.heatmap(corr, cmap='binary', ax=ax, square=True)
return ax

plotCorrelation(data[predictors], mod=2)

_ = mistat.FDS_Plot(data[predictors], label='PENSIM CCD')
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(2) Build a linear regression model to predict X with all main effects, two-way
interactions and quadratic terms.

formula = ('X ˜ (S0 + pH + time + feed)**2 + ' +
'I(S0**2) + I(pH**2) + I(time**2) + I(feed**2)')

model = smf.ols(formula, data=data).fit()
print(model.summary2().tables[1].round(4))

Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept -7.0367 7.4674 -0.9423 0.3663 -23.4724 9.3989
S0 0.2829 0.1164 2.4299 0.0334 0.0267 0.5391
pH -0.2835 3.4977 -0.0810 0.9369 -7.9818 7.4149
time 0.0496 0.0242 2.0450 0.0655 -0.0038 0.1029
feed 213.1175 79.3833 2.6847 0.0212 38.3959 387.8390
S0:pH -0.0338 0.0153 -2.2018 0.0499 -0.0676 -0.0000
S0:time -0.0004 0.0002 -2.3243 0.0403 -0.0007 -0.0000
S0:feed 0.6962 0.7674 0.9073 0.3837 -0.9928 2.3853
pH:time -0.0057 0.0015 -3.6843 0.0036 -0.0090 -0.0023
pH:feed 6.9927 7.6741 0.9112 0.3817 -9.8978 23.8833
time:feed 0.2036 0.0767 2.6532 0.0225 0.0347 0.3725
I(S0 ** 2) -0.0000 0.0038 -0.0042 0.9967 -0.0085 0.0084
I(pH ** 2) 0.2168 0.3836 0.5651 0.5833 -0.6276 1.0612
I(time ** 2) -0.0000 0.0000 -0.9776 0.3493 -0.0001 0.0000
I(feed ** 2) -715.7954 959.0771 -0.7463 0.4711 -2826.7099 1395.1191

Considering the 𝑝-values, the following terms are signficant: S0, time, feed,
S0:pH, S0:time, pH:time, and time:feed.

Repeat the same for P

formula = ('P ˜ (S0 + pH + time + feed)**2 + ' +
'I(S0**2) + I(pH**2) + I(time**2) + I(feed**2)')

model = smf.ols(formula, data=data).fit()
print(model.summary2().tables[1].round(4))

Coef. Std.Err. t P>|t| [0.025 0.975]
Intercept -7.7603 2.2162 -3.5015 0.0050 -12.6382 -2.8823
S0 0.0712 0.0345 2.0613 0.0637 -0.0048 0.1473
pH 3.1952 1.0381 3.0780 0.0105 0.9104 5.4800
time 0.0085 0.0072 1.1832 0.2617 -0.0073 0.0243
feed -74.5196 23.5602 -3.1629 0.0090 -126.3752 -22.6640
S0:pH -0.0065 0.0046 -1.4322 0.1799 -0.0165 0.0035
S0:time -0.0001 0.0000 -2.3874 0.0360 -0.0002 -0.0000
S0:feed 0.1250 0.2278 0.5490 0.5940 -0.3763 0.6263
pH:time -0.0018 0.0005 -3.9791 0.0022 -0.0028 -0.0008
pH:feed 15.3345 2.2776 6.7328 0.0000 10.3215 20.3474
time:feed 0.1155 0.0228 5.0726 0.0004 0.0654 0.1657
I(S0 ** 2) -0.0001 0.0011 -0.0879 0.9315 -0.0026 0.0024
I(pH ** 2) -0.3177 0.1139 -2.7905 0.0176 -0.5683 -0.0671
I(time ** 2) -0.0000 0.0000 -0.1631 0.8734 -0.0000 0.0000
I(feed ** 2) -208.4846 284.6444 -0.7324 0.4792 -834.9827 418.0135

In this model, the following terms are significant: S0, pH, feed, S0:time,
pH:time, pH:feed, time:feed, and pH2.

(3) Do the models reveal information about the behavior of the PENSIM simula-
tor?

Exercise 8.3 Example 4.5 provides an example of time series tracking engine vibra-
tions of railway vehicle suspension systems. These suspensions can be affected by
wheel flats with significant impact on system performance and safety. The dataset
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ORDER PSD.csv includes three series where time is in units of revolution order.
This angular resampling transformation is eliminating the variability in revolution
time. The three time series correspond to vibrations in healthy suspensions and with
wheel flats of 10 mm and 20 mm. In the analysis use the log transformed data.

1. Fit an ARIMA model to the healthy suspension vibration data (see Chapter 6,
Kenett et al. 2022b)

2. Fit the same model to the 10 mm and 20 mm wheel flat
3. Compare the model parameters

Solution 8.3 (1) + (2)

data = mistat.load_data('ORDER_PSD.csv')
print(data.columns)
fig, axes = plt.subplots(ncols=3, figsize=[10,3])
data['Log[Healthy]'].plot(ax=axes[0])
data['Log[PSD - 10 mm]'].plot(ax=axes[1])
data['Log[PSD - 20 mm]'].plot(ax=axes[2])
for ax in axes:

ax.set_ylim(-17, 1)
plt.tight_layout()

Index(['Order', 'Healthy', 'Log[Healthy]', 'PSD - 10 mm', 'Log[PSD -
10 mm]',

'PSD - 20 mm', 'Log[PSD - 20 mm]'],
dtype='object')
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Code similar to what can be found in Example 8.1, was used to derive best
parameters for the ARIMA model.

parameters = {
'Log[Healthy]': (2, 1, 1),
'Log[PSD - 10 mm]': (2, 1, 2),
'Log[PSD - 20 mm]': (2, 1, 2),

}

results = {}
for series, parameter in parameters.items():

mod = SARIMAX(data[series], order=parameter)
results[series] = mod.fit(method='nm', maxiter=600, disp=False)

The model predictions are shown in Fig. 8.4.

def addSARIMAX_predictions(predictions, ax, series, label=None, linestyle=None):
pred_mean = predictions.predicted_mean
pred_mean.index = pred_mean.index + 1
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pred_mean.plot(ax=ax, label=label, alpha=0.7, color='black', linestyle=linestyle)
pred_ci = predictions.conf_int()
pred_ci.index = pred_ci.index + 1
ax.fill_between(pred_ci.index[1:],

pred_ci[f'lower {series}'].iloc[1:], pred_ci[f'upper {series}'].iloc[1:],
color='k', alpha=0.2)

fig, axes = plt.subplots(nrows=3, figsize=[6, 12])
for ax, (series, result) in zip(axes, results.items()):

data[['Order', series]].plot(x='Order', y=series, label='observed', ax=ax,
color='grey', linestyle=':')

predictions = result.get_prediction(start=1)
addSARIMAX_predictions(predictions, ax, series, label='One-step ahead forecast')
forecast = result.get_prediction(start=len(data), end=len(data) + 1000, dynamic=True, full_results=True)
addSARIMAX_predictions(forecast, ax, series, label='Forecast', linestyle='--')
ax.set_title(series)
ax.set_xlabel('Order')
ax.set_ylabel(series)
ax.set_ylim(-17, 5)
ax.legend()

plt.tight_layout()
plt.show()

/usr/local/lib/python3.9/site-
packages/statsmodels/tsa/statespace/representation.py:374:
FutureWarning: Unknown keyword arguments:
dict_keys(['full_results']).Passing unknown keyword arguments will
raise a TypeError beginning in version 0.15.

warnings.warn(msg, FutureWarning)
/usr/local/lib/python3.9/site-
packages/statsmodels/tsa/statespace/representation.py:374:
FutureWarning: Unknown keyword arguments:
dict_keys(['full_results']).Passing unknown keyword arguments will
raise a TypeError beginning in version 0.15.

warnings.warn(msg, FutureWarning)
/usr/local/lib/python3.9/site-
packages/statsmodels/tsa/statespace/representation.py:374:
FutureWarning: Unknown keyword arguments:
dict_keys(['full_results']).Passing unknown keyword arguments will
raise a TypeError beginning in version 0.15.

warnings.warn(msg, FutureWarning)

(iii) The model parameters are:

pd.DataFrame({k: model.params for k, model in results.items()})

Log[Healthy] Log[PSD - 10 mm] Log[PSD - 20 mm]
ar.L1 1.331605 1.057846 0.970183
ar.L2 -0.532976 -0.213922 -0.166351
ma.L1 -0.959408 -0.628138 -0.636777
ma.L2 NaN -0.340708 -0.329220
sigma2 0.153597 0.136405 0.133744

Exercise 8.4 A company operates in 8 cities. The company product is temperature
sensitive and management is interested in clustering the 8 locations by temperature
characteristics. Monthly average daily minimum and maximum temperatures in these
8 cities, from 2000–2012, is available as dataset TEMP WORLD.csv.2

2 Also available for download: https://www.stat.auckland.ac.nz/˜wild/data/data_
from_iNZight/TimeSeriesDatasets_130207/TempWorld1.csv.

https://www.stat.auckland.ac.nz/~wild/data/data_from_iNZight/TimeSeriesDatasets_130207/TempWorld1.csv
https://www.stat.auckland.ac.nz/~wild/data/data_from_iNZight/TimeSeriesDatasets_130207/TempWorld1.csv
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Fig. 8.4: Long term forecast of the log transformed data using ARIMA models
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Fig. 8.5: Temperature curves for the eight cities in dataset TEMP WORLD.csv

1. Use a smoother to compare the maximum and minimum monthly average tem-
peratures in the 8 cities.

2. Group the cities using maximum and minimum temperature patterns using
hierarchical clusters.

3. Group the cities using maximum and minimum temperature patterns using
𝐾-means clusters.

Solution 8.4 Load the data and add columns for Year and Month based on the
content of the Date column.

data = mistat.load_data('TEMP_WORLD.csv')
cities = ['CapeTown', 'BuenosAries', 'Paris', 'Madrid',

'Tokyo', 'Brisbane', 'Auckland', 'LosAngeles']
data['Year'] = [int(s.split('M')[0]) for s in data['Date']]
data['Month'] = [int(s.split('M')[1]) for s in data['Date']]

The temperature curves show the expected seasonal pattern (see Fig. 8.5).

fig, axes = plt.subplots(ncols=4, nrows=2, figsize=[10, 4])
for city, ax in zip(cities, [*axes[0], *axes[1]]):

data[[f'{city}Min', f'{city}Max']].plot(ax=ax, legend=False)
ax.set_ylim(-5, 35)
ax.set_title(city)

plt.tight_layout()

Overlaying the different years, shows that the monthly averages are in general
consistent over the years. (see Fig. 8.6).

meanTemp = data.groupby('Month').mean(numeric_only=True)

fig, axes = plt.subplots(ncols=4, nrows=2, figsize=[10, 4])
for city, ax in zip(cities, [*axes[0], *axes[1]]):

for key, group in data.groupby('Year'):
group.plot(x='Month', y=f'{city}Min', ax=ax, c='C0', legend=False)
group.plot(x='Month', y=f'{city}Max', ax=ax, c='C1', legend=False)

meanTemp[[f'{city}Min', f'{city}Max']].plot(ax=ax, legend=False, color='black')
ax.set_ylim(-5, 35)
ax.set_title(city)

plt.tight_layout()
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Fig. 8.6: Annual temperature curves for the eight cities in dataset
TEMP WORLD.csv by month; the black line shows the average maximum or
minimum temperature

(1) This observation allows us to reduce the dataset to average monthly tempera-
tures. The average temperature is overlaid in black on the graphs in Fig. 8.6.

# determine average monthly temperatures
meanTemp = data.groupby('Month').mean(numeric_only=True)

The shape of the curves shows the different temperature change on the northern
(Paris, Madrid, Tokyo, LosAngeles) and southern (CapeTown, BuenosAries, Bris-
bane, Auckland) hemisphere. Cities also differ in the range temperature changes.

(2) Based on the results from (1), we reduce the dataset prior to clustering to the
mean maximum and minimum temperature profiles and concatenate the two profiles
into a single row of numbers. Each row contains first the minimum temperature
values for January to December and then the maximum temperature values for a
given city.

months = [*meanTemp.index, *meanTemp.index]
labels = [*(['Min']*12), *(['Max']*12)]
reformatted = []
for city in cities:

reformatted.append([*meanTemp[f'{city}Min'], *meanTemp[f'{city}Max']])
combined = pd.DataFrame(reformatted, index=cities, columns=[labels, months])

The reformatted data are clustered using the AgglomerativeClustering method in
scikit-learn. Prior to the hierarchical clustering, the reformatted data are scaled
to zero mean and unit variance using StandardScaler. A graphical representation of
the resulting clustering is shown in Fig. 8.7.

from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from mistat import plot_dendrogram

scaler = StandardScaler()
model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)
X = scaler.fit_transform(combined)
model = model.fit(X)
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Fig. 8.7: Hierarchical clustering of cities based on annual temperature variations

fig, ax = plt.subplots(figsize=[10, 3])
plot_dendrogram(model, ax=ax, labels=combined.index)
ax.set_title('Dendrogram')
plt.show()

The hierarchical clustering shows two clearly separated clusters. One with the
cities from the northern hemisphere and the other with the cities from the southern
hemisphere.

(3) 𝐾-means clustering with KMeans from the scikit-learn package using
the standardized dataset X from (2). Based on the previous analysis, we request two
clusters.

from sklearn.cluster import KMeans

model = KMeans(n_clusters=2, random_state=1).fit(X)
print('Cluster membership (first two data points)')
pd.DataFrame({
'City': cities,
'Cluster': model.predict(X),

})

/usr/local/lib/python3.9/site-
packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default
value of `n_init` will change from 10 to 'auto' in 1.4. Set the value
of `n_init` explicitly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)
Cluster membership (first two data points)

City Cluster
0 CapeTown 0
1 BuenosAries 0
2 Paris 1
3 Madrid 1
4 Tokyo 1
5 Brisbane 0
6 Auckland 0
7 LosAngeles 1

The 𝐾-means clustering again reveals the two distinct groups.
Fig. 8.8 shows the resulting clusters using a principal component analysis (PCA)

of the data.
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Fig. 8.8: Principal Component Analysis (PCA) of annual temperature variations in
the eight cities; the points are colored by their 𝐾-means cluster membership

from sklearn.decomposition import PCA
from scipy.spatial import ConvexHull

# use PCA to map the dataset into a 2D space
pca = PCA(n_components=2).fit(X)
coord = pca.transform(X)

fig, ax = plt.subplots()
df = pd.DataFrame({'x': coord[:,0], 'y': coord[:,1],

'cluster': model.predict(X),
'city': combined.index})

colors = [f'C{i}' for i in model.predict(X)]
ax.scatter(df.x, df.y, color=[f'C{cl}' for cl in df.cluster])
for _, row in df.iterrows():

ax.annotate(row.city, (row.x, row.y))

plt.show()





Chapter 9
Reliability Analysis

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.formula.api as smf
import lifelines
import pingouin as pg
import seaborn as sns
import matplotlib.pyplot as plt
import mistat

Exercise 9.1 During 600 hours of manufacturing time, a machine was up 510 hours.
It had 100 failures which required a total of 11 hours of repair time. What is the
MTTF of this machine? What is its mean time till repair, MTTR? What is the intrinsic
availability?

Solution 9.1 𝑀𝑇𝑇𝐹 = 5.1 [hr]; 𝑀𝑇𝑇𝑅 = 6.6 [min]; Intrinsic Availability = 0.979.

Exercise 9.2 The frequency distribution of the lifetime in a random sample of 𝑛 =

2, 000 solar cells, under accelerated life testing is the following:

𝑡 [103 [hr] 0-1 1-2 2-3 3-4 4-5 5-
prof. freq. 0.15 0.25 0.25 0.10 0.10 0.15

The relationship of the scale parameters of the life distributions, between normal
and accelerated conditions is 10:1.

(i) Estimate the reliability of the solar cells at age 𝑡 = 4.0 [yr].
(ii) What proportion of solar cells are expected to survive 40,000 [hr] among those

which survived 20,000 [hr]?

Solution 9.2 (i) Since 4 yrs = 35,040 hr, the reliability estimate is 𝑅(3.5) = 0.30.
(linear interpolation between 𝑅(3) and 𝑅(4)

123
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https://gedeck.github.io/mistat-code-solutions/IndustrialStatistics/
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(ii) Of the solar cells that survive 20,000 hours, the proportion expected to survive
40,000 hours is 0.25

0.60 = 0.42.

Exercise 9.3 The CDF of the lifetime [months] of an equipment is

𝐹 (𝑡) =


𝑡4/20736, 0 ≤ 𝑡 < 12

1, 12 ≤ 𝑡

(i) What is the failure rate function of this equipment?
(ii) What is the MTTF?

(iii) What is the reliability of the equipment at 4 months?

Solution 9.3 (i) The hazard function is

ℎ(𝑡) =


4𝑡3

20736·
(
1− 𝑡4

20736

) , 0 ≤ 𝑡 < 12

∞, 12 ≤ 𝑡.

(ii) 𝑀𝑇𝑇𝐹 =
∫ 12

0

(
1 − 𝑡4

20736

)
d𝑡 = 9.6 [Months].

(iii) 𝑅(4) = 1 − 𝐹 (4) = 0.9877.

Exercise 9.4 The reliability of a system is

𝑅(𝑡) = exp{−2𝑡 − 3𝑡2}, 0 ≤ 𝑡 < ∞.

(i) What is the failure rate of this system at age 𝑡 = 3?
(ii) Given that the system reached the age of 𝑡 = 3, what is its reliability for two

additional time units?

Solution 9.4 (i) ℎ(𝑡) = 2 + 6𝑡, ℎ(3) = 20. (ii) 𝑅(5)/𝑅(3) = 0.

Exercise 9.5 An aircraft has four engines but can land using only two engines.

(i) Assuming that the reliability of each engine, for the duration of a mission,
is 𝑅 = 0.95, and that engine failures are independent, compute the mission
reliability of the aircraft.

(ii) What is the mission reliability of the aircraft if at least one functioning engine
must be on each wing?

Solution 9.5 (i) 1−𝐵(1; 4, 0.95) = 0.9995 (ii) (1−𝐵(0; 2, 0.95))2 = (1−0.052)2 =

0.9950.
In Python:

print('(i)', 1-stats.binom(4, 0.95).pmf(1))
print('(ii)', (1-stats.binom(2, 0.95).pmf(0))**2)

(i) 0.999525
(ii) 0.9950062499999999
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Fig. 9.1: System schema

Exercise 9.6 (i) Draw a block diagram of a system having the structure function

𝑅sys = 𝜓𝑠 (𝜓𝑝 (𝜓𝑀1 , 𝜓𝑀2 ), 𝑅6), 𝜓𝑀1 = 𝜓𝑝 (𝑅1, 𝑅2𝑅3), 𝜓𝑀2 = 𝜓2 (𝑅4, 𝑅5)

(ii) Determine 𝑅sys if all the components act independently and have the same
reliability 𝑅 = 0.8.

Solution 9.6 (a) The block diagram of the system is shown in Fig. 9.1.
(b) 𝑅𝑀1 = 1 − (1 − 𝑅1) (1 − 𝑅2) (1 − 𝑅3) and 𝑅𝑀2 = 𝑅4𝑅5. Thus,

𝑅𝑠𝑦𝑠 = [1 − (1 − 𝑅1) (1 − 𝑅2) (1 − 𝑅3) (1 − 𝑅4𝑅5)]𝑅6

= 𝑅1𝑅6 + 𝑅2𝑅6 + 𝑅3𝑅6 − 𝑅1𝑅2𝑅6 + 𝑅4𝑅5𝑅6

− 𝑅1𝑅3𝑅6 − 𝑅2𝑅3𝑅6 + 𝑅1𝑅2𝑅3𝑅6

− 𝑅1𝑅4𝑅5𝑅6 − 𝑅2𝑅4𝑅5𝑅6 − 𝑅3𝑅4𝑅5𝑅6

+ 𝑅2𝑅3𝑅4𝑅5𝑅6 + 𝑅1𝑅3𝑅4𝑅5𝑅6 + 𝑅1𝑅2𝑅4𝑅5𝑅6

− 𝑅1𝑅2𝑅3𝑅4𝑅5𝑅6.

If all values of 𝑅 = 0.8 then 𝑅𝑠𝑦𝑠 = 0.7977.

Exercise 9.7 Consider a system of 𝑛 components in a series structure. Let 𝑅1, · · · , 𝑅𝑛

be the reliabilities of the components. Show that

𝑅sys ≥ 1 −
𝑛∑︁
𝑖=1

(1 − 𝑅𝑖).

Solution 9.7 Extending Bonferroni’s inequality,
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Pr{𝐶1 = 1, . . . , 𝐶𝑛 = 1} = 1 − Pr

{
𝑛⋃
𝑖=1

{𝐶𝑖 = 0}
}

≥ 1 −
𝑛∑︁
𝑖=1

Pr{𝐶𝑖 = 0}

= 1 −
𝑛∑︁
𝑖=1

(1 − 𝑅𝑖);

where {𝐶𝑖 = 1} is the event that the 𝑖-th component functions and {𝐶𝑖 = 0} is the
event that it fails. Since 𝑅𝑠𝑦𝑠 = Pr{𝐶1 = 1, . . . , 𝐶𝑛 = 1} for a series structure, the
inequality follows.

Exercise 9.8 A 4 out of 8 system has identical components whose life lengths 𝑇
[weeks] are independent and identically distributed like a Weibull𝑊

(
1
2 , 100

)
. What

is the reliability of the system at 𝑡0 = 5 weeks?

Solution 9.8 The reliability of a component is \ (5) = Pr
{
𝑊

(
1
2 , 100

)
> 5

}
=

0.79963.
Therefore, 𝑅𝑠𝑦𝑠 = 1 − 𝐵(3; 8, 0.7996) = 0.9895.

Exercise 9.9 A system consists of a main unit and two standby units. The lifetimes
of these units are exponential with mean 𝛽 = 100 [hr]. The standby units undergo
no failure while idle. Switching will take place when required. What is the MTTF
of the system? What is the reliability function of this system?

Solution 9.9 The life length of the system is the sum of 3 independent 𝐸 (100),
that is 𝐺 (3, 100) (gamma distribution). Hence the 𝑀𝑇𝑇𝐹 = 300 hr. The reliability
function of the system is

𝑅𝑠𝑦𝑠 (𝑡) = 1 − 𝐺 (𝑡; 3, 100).

Exercise 9.10 Suppose that the TTF in a renewal cycle has a 𝑊 (𝛼, 𝛽) distribution
and that the TTR has a lognormal distribution LN(`, 𝜎). Assume further that TTF
and TTR are independent. What are the mean and standard deviation of a renewal
cycle.

Solution 9.10 Let 𝐶 be the length of the renewal cycle.

𝐸{𝐶} = 𝛽Γ
(
1 + 1

𝛼

)
+ 𝑒`+𝜎2/2.

𝜎(𝐶) =
[
𝛽2

(
Γ

(
1 + 2

𝛼

)
− Γ2

(
1 + 1

𝛼

))
+ 𝑒2`+𝜎2 (𝑒𝜎2 − 1)

]1/2
.

Exercise 9.11 Suppose that a renewal cycle has the normal distribution 𝑁 (100, 10).
Determine the p.d.f. of 𝑁𝑅 (200).
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Solution 9.11 Let 𝐶1, 𝐶2, . . . denote the renewal cycle times, 𝐶𝑖 ∼ 𝑁 (100, 10).
𝑁𝑅 (200) is a random variable representing the number of repairs that occur during
the time interval (0, 200].

Pr{𝑁𝑅 (200) = 0} = Pr{𝐶1 > 200} = 1 −Φ

(
200 − 100

10

)
= 1 −Φ(10) = 0.

For 𝑘 = 1, 2, 3, . . . , 𝐶1 + · · · + 𝐶𝑘 ∼ 𝑁 (100𝑘, 10
√
𝑘) and so

Pr{𝑁𝑅 (200) = 𝑘} = Pr{𝑁𝑅 (200) ≥ 𝑘} − Pr(𝑁𝑅 (200) ≥ 𝑘 + 1}
= Pr{𝐶1 + . . . + 𝐶𝑘 ≤ 200} − Pr{𝐶1 + . . . + 𝐶𝑘+1 ≤ 200}

= Φ

(
200 − 100𝑘

10
√
𝑘

)
−Φ

(
200 − 100(𝑘 + 1)

10
√
𝑘 + 1

)
= Φ

(
20
√
𝑘
− 10

√
𝑘

)
−Φ

(
20

√
𝑘 + 1

− 10
√
𝑘 + 1

)
,

where Φ(·) denotes the c.d.f. of a 𝑁 (0, 1) distribution. Thus the p.d.f. of 𝑁𝑅 (200)
is given by the following table

𝑘 Pr{𝑁𝑅 (200) = 𝑘}
0 0
1 0.5
2 0.5
3 0
4 0
...

...

Exercise 9.12 Let the renewal cycle 𝐶 be distributed like 𝑁 (100, 10). Approximate
𝑉 (1000).

Solution 9.12 𝑉 (1000) = ∑∞
𝑛=1 Φ

(
100−10𝑛√

𝑛

)
≈ 9.501.

Exercise 9.13 Derive the renewal density 𝑣(𝑡) for a renewal process with 𝐶 ∼
𝑁 (100, 10).

Solution 9.13 𝑣(𝑡) = 1
10
√
𝑛

∑∞
𝑛=1 𝜙

(
𝑡−100𝑛
10

√
𝑛

)
, where 𝜙(𝑍) is the p.d.f. of 𝑁 (0, 1).

Exercise 9.14 Two identical components are connected in parallel. The system is
not repaired until both components fail. Assuming that the TTF of each component
is exponentially distributed, 𝐸 (𝛽), and the total repair time is 𝐺 (2, 𝛾), derive the
Laplace transform of the availability function 𝐴(𝑡) of the system.

Solution 9.14 Since 𝑇𝑇𝐹 ∼ max(𝐸1 (𝛽), 𝐸2 (𝛽)), 𝐹 (𝑡) = (1 − 𝑒−𝑡/𝛽)2 and 𝑅(𝑡) =
1 − (1 − 𝑒−𝑡/𝛽)2.

Using Laplace transforms we have
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𝑅∗ (𝑠) = 𝛽(3 + 𝑠𝛽)
(1 + 𝑠𝛽) (2 + 𝑠𝛽) , 𝑓 ∗ (𝑠) = 2

(1 + 𝛽𝑠) (2 + 𝛽𝑠) , 𝑔∗ (𝑠) = 1
(1 + 𝑠𝛾)2 and

𝐴∗ (𝑠) = 𝛽(3 + 𝑠𝛽) (1 + 𝛾𝑠)2

𝑠[3𝛽 + 4𝛾 + (𝛽2 + 6𝛽𝛾 + 2𝛾2)𝑠 + (2𝛽2𝛾 + 3𝛽𝛾2)𝑠2 + 𝛽2𝛾2𝑠3]
.

Exercise 9.15 Simulate a sample of 100 TTF of a system comprised of two com-
ponents connected in parallel, where the life distribution of each component (in
hours) is 𝐸 (100). Similarly, simulate a sample of 100 repair times (in hours), having
a 𝐺 (2, 1) distribution. Estimate the expected value and variance of the number of
renewals in 2000 [hr].

Solution 9.15 For our samples, with 𝑀 = 500 runs, we get the following estimates:

𝐸{𝑁𝑅 (2000)} = 𝑉 (2000) = 16.574 and Var{𝑁𝑅 (2000)} = 7.59.

Exercise 9.16 In a given life test, 𝑛 = 15 units are placed to operate independently.
The time till failure of each unit has an exponential distribution with mean 2000
[hr]. The life test terminates immediately after the 10th failure. How long is the test
expected to last?

Solution 9.16 The expected length of the test is 2069.8 [hr].

Exercise 9.17 If 𝑛 units are put on test and their TTF are exponentially distributed
with mean 𝛽, the time elapsed between the 𝑟th and (𝑟 + 1)th failure, i.e., Δ𝑛,𝑟 =

𝑇𝑛,𝑟+1 − 𝑇𝑛,𝑟 , is exponentially distributed with mean 𝛽/(𝑛 − 𝑟), 𝑟 = 0, 1, · · · , 𝑛 − 1.
Also, Δ𝑛,0,Δ𝑛,2, · · · ,Δ𝑛,𝑛−1 are independent. What is the variance of 𝑇𝑛,𝑟? Use this
result to compute the variance of the test length in the previous exercise.

Solution 9.17 Let 𝑇𝑛,0 ≡ 0. Then 𝑇𝑛,𝑟 =
∑𝑟

𝑗=1 (𝑇𝑛, 𝑗 − 𝑇𝑛, 𝑗−1) =
∑𝑟

𝑗=1 Δ𝑛, 𝑗−1. Thus,

𝑉{𝑇𝑛,𝑟 } = 𝛽2
𝑟∑︁
𝑗=1

(
1

𝑛 − 𝑗 + 1

)2
.

In Exercise 9.16, 𝛽 = 2000 hr, 𝑛 = 15 and 𝑟 = 10. This yields

𝑉{𝑇15,10} = 4 × 106 × 0.116829 = 467, 316 (hr)2.

Exercise 9.18 Consider again the previous exercise. How would you estimate un-
biasedly the scale parameter 𝛽 if the 𝑟 failure times 𝑇𝑛,1, 𝑇𝑛,2, · · · , 𝑇𝑛,𝑟 are given?
What is the variance of this unbiased estimator?

Solution 9.18 Let 𝑆𝑛,𝑟 =
∑𝑟

𝑖=1 𝑇𝑛,𝑖 + (𝑛 − 𝑟)𝑇𝑛,𝑟 . An unbiased estimator of 𝛽 is

𝛽 =
𝑆𝑛,𝑟

𝑟
, 𝑉{𝛽} = 𝛽2

𝑟
.

Exercise 9.19 Simulate a random sample of 100 failure times, following the Weibull
distribution 𝑊 (2.5, 10). Draw a Weibull Probability plot of the data. Estimate the
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parameters of the distribution from the parameters of the linear regression fitted to
the 𝑄–𝑄 plot.

Solution 9.19 The Weibull 𝑄𝑄 plotting is based on the regression of ln𝑇(𝑖) on

𝑊𝑖 = ln
(
− ln

(
1 − 𝑖

𝑛 + 1

))
.

The linear relationship is ln𝑇(𝑖) = 1
a
𝑊𝑖 + ln 𝛽. The slope of the straight line estimates

1
a

and the intercept estimates log 𝛽.

np.random.seed(1)
n = 100
lnTi = np.log(sorted(stats.weibull_min(2.5, scale=10).rvs(n)))
Wi = [np.log(-np.log(1 - i / (n+1))) for i in range(1, n + 1)]
df = pd.DataFrame({'Wi': Wi, 'lnTi': lnTi})
model = smf.ols('lnTi ˜ Wi + 1', data=df).fit()
print(model.params)
intercept, slope = model.params
fig, ax = plt.subplots(figsize=(4, 4))
ax.plot((Wi[0], Wi[-1]),

(slope * Wi[0] + intercept, slope * Wi[-1] + intercept),
color='grey')

ax.scatter(Wi, lnTi, color='black')
ax.set_xlabel(r'$W_{(i)}$')
ax.set_ylabel(r'$\ln(T_i)$')
plt.show()

Intercept 2.294805
Wi 0.496692
dtype: float64

For our sample of 𝑛 = 100 from𝑊 (2.5, 10) the regression of ln𝑇(𝑖) on𝑊𝑖 is

ln(TTF) = 2.295 + 0.497𝑊

Predictor Coef Stdev t-ratio p

Constant 2.2948 0.018 130.703 0.000

W 0.4967 0.013 37.629 0.000

R-sq = 0.935 R-sq(adj) = 0.935.

beta = np.exp(intercept)
nu = 1 / slope
print(f'beta {beta:.3f}, nu {nu:.3f}')

beta 9.922, nu 2.013

The graphical estimate of 𝛽 is 𝛽 = exp(2.295) = 9.922. The graphical estimate of
a is â = 1

0.4643 = 2.013. Both estimates are close to the nominal values. In Fig. 9.2,
we see the Weibull probability plot. This graph puts the sorted observations𝑊(𝑖) on
the 𝑥-axis and ln𝑇𝑖 on the 𝑦-axis where 𝑇𝑖 is the calculated probability of occurrence
for each observation 𝑊(𝑖) assuming a Weibull distribution. As shown above, the 𝛽
and â can be calculated from the slope and intercept of the liner regression line.
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Fig. 9.2: Weibull probability plot

Exercise 9.20 The following is a random sample of the compressive strength of 20
concrete cubes [kg/cm2]:

94.9, 106.9, 229.7, 275.7, 144.5, 112.8, 159.3, 153.1, 270.6, 322.0,
216.4, 544.6, 266.2, 263.6, 138.5, 79.0, 114.6, 66.1, 131.2, 91.1

Make a lognormal 𝑄–𝑄 plot of these data and estimate the mean and standard
deviation of this distribution.

Solution 9.20 The regression of 𝑌𝑖 = ln 𝑋(𝑖) , 𝑖 = 1, . . . , 𝑛 on the normal scores
𝑍𝑖 = Φ−1

(
𝑖−3/8
𝑛+1/4

)
is

Xi = [94.9, 106.9, 229.7, 275.7, 144.5, 112.8, 159.3, 153.1,
270.6, 322.0, 216.4, 544.6, 266.2, 263.6, 138.5, 79.0,
114.6, 66.1, 131.2, 91.1]

n = len(Xi)
Zi = [stats.norm().ppf((i - 3/8)/(n + 1/4)) for i in range(1, n+1)]

df = pd.DataFrame({'Zi': Zi, 'lnXi': np.log(sorted(Xi))})
model = smf.ols('lnXi ˜ Zi + 1', data=df).fit()

intercept, slope = model.params
fig, ax = plt.subplots(figsize=(4, 4))
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Fig. 9.3: Normal Probability Plot of ln 𝑋

ax.plot((Zi[0], Zi[-1]),
(slope * Zi[0] + intercept, slope * Zi[-1] + intercept),
color='grey')

ax.scatter(Zi, df['lnXi'], color='black')
ax.set_xlabel(r'$Z_{(i)}$')
ax.set_ylabel(r'$\ln(X_(i))$')
plt.show()

ln(𝑋) = 5.10 + 0.556𝑍.

Predictor Coef Stdev t-ratio p

Constant 5.09571 0.02201 232.23 0.000

Z 0.55589 0.02344 23.79 0.000

R-sq = 0.969 R-sq(adj) = 0.967.

mu = intercept
sigma = slope
print(f'mu {mu:.3f}, sigma {sigma:.3f}')

mu 5.096, sigma 0.556

The intercept �̂� = 5.09571 is an estimate of `, and the slope �̂� = 0.5559 is
an estimate of 𝜎. The mean of LN(b, 𝜎2) is b = 𝑒`+𝜎

2/2 and its variance is 𝐷2 =
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𝑒2`+𝜎2 (𝑒𝜎2 −1). Thus, the graphical estimates are b̂ = 190.608 and �̂� = 13154.858.
The mean �̄� and variance 𝑆2 of the given sample are 189.04 and 12948.2. In Fig. 9.3
we see the normal probability plotting of the data.

Exercise 9.21 The following data represent the time till first failure [days] of elec-
trical equipment. The data were censored after 400 days.

13, 157, 172, 176, 249, 303, 350, 400+, 400+.

(Censored values appear as 𝑥+.) Make a Weibull𝑄–𝑄 plot of these data and estimate
the median of the distribution.

Solution 9.21 The 𝑄–𝑄 plot is given in Fig. 9.4.

np.random.seed(1)
data = [13, 157, 172, 176, 249, 303, 350, 400, 400]
n = len(data)
lnTi = np.log(data)
Wi = [np.log(-np.log(1 - i / (n+1))) for i in range(1, n + 1)]
# exclude the censored data for the regression analysis
df = pd.DataFrame({'Wi': Wi[:7], 'lnTi': lnTi[:7]})
model = smf.ols('lnTi ˜ Wi + 1', data=df).fit()
print(model.params)
intercept, slope = model.params
fig, ax = plt.subplots(figsize=(4, 4))
ax.plot((Wi[0], Wi[-1]),

(slope * Wi[0] + intercept, slope * Wi[-1] + intercept),
color='grey')

ax.scatter(Wi[:-2], lnTi[:-2], color='black')
ax.scatter(Wi[-2:], lnTi[-2:], color='lightgrey')
ax.set_xlabel(r'$W_{(i)}$')
ax.set_ylabel(r'$\ln(T_i)$')
plt.show()

Intercept 5.959374
Wi 1.168853
dtype: float64

The regression of ln𝑇(𝑖) on𝑊𝑖 = ln
(
− ln

(
1 − 𝑖

10
) )

for 𝑖 = 1, . . . , 7 is

ln(𝑇) = 5.96 + 1.17𝑊 (9.0.1)

Predictor Coef Stdev t-ratio p

Constant 5.9594 0.3068 19.43 0.000

W 1.1689 0.2705 4.32 0.008

s = 0.5627 R-sq = 0.789 R-sq(adj) = 0.747.

According to this regression line, the estimates of 𝛽 and a are 𝛽 = exp(5.9594) =
387.378 and â = 1/1.1689 = 0.855. The estimate of the median of the distribution
is

𝑀𝑒 = 𝛽

(
− ln

(
1
2

))1/â
= 252.33.

Exercise 9.22 Make a PL (Kaplan–Meier) estimate of the reliability function of an
electronic device, based on 50 failure times in dataset ELECFAIL.csv.



9 Reliability Analysis 133

2.0 1.5 1.0 0.5 0.0 0.5
W(i)

3

4

5

6

7

ln
(T

i)

Fig. 9.4: Weibull probability plot

Solution 9.22 Use the lifelines package to fit a Kaplan-Meier estimator. The
reliability function is shown in Fig. 9.5.

elecfail = mistat.load_data('ELECFAIL.csv')

kmf = lifelines.KaplanMeierFitter()
kmf.fit(elecfail)
kmf.plot_survival_function()
plt.show()

Exercise 9.23 Assuming that the failure times in dataset ELECFAIL.csv come
from an exponential distribution 𝐸 (𝛽), compute the MLE of 𝛽 and of 𝑅(50; 𝛽) =

exp{−50/𝛽}. [The MLE of a function of a parameter is obtained by substituting the
MLE of the parameter in the function.] Determine confidence intervals for 𝛽 and for
𝑅(50; 𝛽) at level of confidence 0.95.

Solution 9.23 Use the lifelines package to fit an exponential model.

elecfail = mistat.load_data('ELECFAIL.csv')

kmf = lifelines.ExponentialFitter()
kmf.fit(elecfail)
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Fig. 9.5: Kaplan-Meier Estimator of The Reliability of An Electric Device

<lifelines.ExponentialFitter:"Exponential_estimate", fitted with 50
total observations, 0 right-censored observations>

kmf.print_summary()

coef se(coef) coef lower 95% coef upper 95% cmp to z p -log2(p)

lambda 57.07 8.07 41.25 72.89 0.00 7.07 0.00 39.24

Note that the lifelines package uses lambda for 𝛽. We can use the result to
calculate 𝑅(50) and it’s confidence limits.

beta = kmf.lambda_
print(f'R(50) = {np.exp(-50/beta):.4f}')
ci = kmf.summary[['coef lower 95%', 'coef upper 95%']]
print(f'conf.int {np.exp(-50/ci)}')

R(50) = 0.4164
conf.int coef lower 95% coef upper 95%
lambda_ 0.297577 0.503598

The MLE of 𝛽 is 𝛽 = �̄� = 57.07. Since 𝑅(𝑡) = exp(−𝑡/𝛽), the MLE of R(50)
is �̂�(50) = 0.4164. Note that lifelines uses a normal approximation for the
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confidence interval. Hence, confidence limits for 𝛽, with 1 − 𝛼 = 0.95 are (41.25,
72.89). Substituting these limits into 𝑅(𝑡) gives (0.298, 0.504) as a 0.95 confidence
interval for 𝑅(50).

Exercise 9.24 The following are values of 20 random variables having an exponential
distribution 𝐸 (𝛽). The values are censored at 𝑡∗ = 200.

96.88, 154.24, 67.44, 191.72, 173.36, 200, 140.81, 200, 154.71, 120.73,
24.29, 10.95, 2.36, 186.93, 57.61, 99.13, 32.74, 200, 39.77, 39.52.

Determine the MLE of 𝛽. Use 𝛽 equal to the MLE, to estimate the standard deviation
of the MLE and to obtain confidence interval for 𝛽, at level 1 − 𝛼 = 0.95. [This
simulation is called an empirical Bootstrap.]

Solution 9.24 Use the lifelines package to fit an exponential model.

T = np.array([96.88, 154.24, 67.44, 191.72, 173.36, 200, 140.81,
200, 154.71, 120.73, 24.29, 10.95, 2.36, 186.93, 57.61,
99.13, 32.74, 200, 39.77, 39.52])

E = np.array([ti < 200 for ti in T])

kmf = lifelines.ExponentialFitter()
kmf.fit(T, E)

<lifelines.ExponentialFitter:"Exponential_estimate", fitted with 20
total observations, 3 right-censored observations>

kmf.print_summary()

coef se(coef) coef lower 95% coef upper 95% cmp to z p -log2(p)

lambda 129.01 31.29 67.68 190.34 0.00 4.12 0.00 14.71

We have 𝑛 = 20, 𝐾𝑛 = 17 and 𝛽 = 129.011.
We use the following code for the empirical bootstrap.

n_boot=500
idx = list(range(len(T)))
def stat_func(x):

epf = lifelines.ExponentialFitter().fit(T[x], E[x])
return epf.params_['lambda_']

ci, dist = pg.compute_bootci(idx, func=stat_func, n_boot=n_boot, confidence=0.95,
method='per', seed=1, return_dist=True)

se_lambda = np.std(dist)
print(f'std(lambda): {se_lambda:.3f}')
print(f'conf.int.: {ci.round(3)}')

std(lambda): 27.863
conf.int.: [ 83.75 191.61]

With 𝑀 = 500 runs, the estimated STD of 𝛽 is 27.863, with confidence interval
(83.75, 191.61).
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Exercise 9.25 Determine 𝑛0 and 𝑟 for a frequency censoring test for the exponential
distribution, where the cost of a unit is 10 times bigger than the cost per time unit of
testing. We wish that S.E.{𝛽𝑛} = 0.1𝛽, and the expected cost should be minimized
at 𝛽 = 100 [hr]. What is the expected cost of this test, at 𝛽 = 100, when 𝑐1 = $1 [hr].

Solution 9.25 For 𝛽 = 100, 𝑆.𝐸.{𝛽𝑛} = 0.1𝛽 = 10 = 100√
𝑟
. Hence 𝑟 = 100 and

𝑛0 ≈ 100
2

(
1 +

(
1 + 4

100
1000

)1/2
)
= 109.16 ≈ 110.

𝐸{𝑇𝑛,𝑟 } = 235.327 and the expected cost of testing is 𝐸{𝐶} = 10×𝑛+1×𝐸{𝑇𝑛,𝑟 } =
$1335.33.

Exercise 9.26 Dataset WEIBUL.csv contains the values of a random sample of size
𝑛 = 50 from a Weibull distribution.

(i) Obtain MLE of the scale and shape parameters 𝛽 and a.
(ii) Use the MLE estimates

of 𝛽 and a, to obtain parametric bootstrap EBD of the distribution of 𝛽, â, with
𝑀 = 500 runs. Estimate from this distribution the standard deviations of 𝛽 and â.
Compare these estimates to the large sample approximations.

Solution 9.26 (a)

T = mistat.load_data('WEIBUL.csv')

kmf = lifelines.WeibullFitter()
kmf.fit(T)

<lifelines.WeibullFitter:"Weibull_estimate", fitted with 50 total
observations, 0 right-censored observations>

kmf.print_summary()

coef se(coef) coef lower 95% coef upper 95% cmp to z p -log2(p)
lambda 27.08 2.94 21.31 32.85 1.00 8.86 0.00 60.17
rho 1.37 0.15 1.09 1.66 1.00 2.57 0.01 6.63

For the WEIBUL.csv dataset we obtained 𝛽 = 27.0789 and â = 1.374.
(b)

n_boot=5
idx = list(range(len(T)))
def stat_func(x):

epf = lifelines.WeibullFitter().fit(T[x])
return epf.params_['lambda_']

ci, dist = pg.compute_bootci(idx, func=stat_func, n_boot=n_boot, confidence=0.95,
method='per', seed=1, return_dist=True)
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se_beta = np.std(dist)
print(f'std(beta): {se_beta:.3f}')

def stat_func(x):
epf = lifelines.WeibullFitter().fit(T[x])
return epf.params_['rho_']

ci, dist = pg.compute_bootci(idx, func=stat_func, n_boot=n_boot, confidence=0.95,
method='per', seed=1, return_dist=True)

se_nu = np.std(dist)
print(f'nu(std): {se_nu:.3f}')

std(beta): 2.874
nu(std): 0.072

The EBD estimates are 𝑆𝐸{𝛽50} = 2.874 and 𝑆𝐸{â50} = 0.072. The asymptotic
estimates are 𝑆𝐸{𝛽50} = 2.94 and 𝑆𝐸{â50} = 0.15. The EBD estimates and the
asymptotic estimates of the standard deviations of 𝛽 and â are very similar.

Exercise 9.27 In binomial life testing by a fixed size sample, how large should
the sample be in order to discriminate between 𝑅0 = 0.99 and 𝑅1 = 0.90, with
𝛼 = 𝛽 = 0.01? [𝛼 and 𝛽 denote the probabilities of error of Type I and II.]

Solution 9.27 To discriminate between 𝑅0 = 0.99 and 𝑅1 = 0.90 with 𝛼 = 𝛽 = 0.01,
𝑛 ≈ 107.

Exercise 9.28 Design the Wald SPRT for binomial life testing, in order to discrim-
inate between 𝑅0 = 0.99 and 𝑅1 = 0.90, with 𝛼 = 𝛽 = 0.01. What is the expected
sample size, ASN, if 𝑅 = 0.9?

Solution 9.28 For 𝑅0 = 0.99, 𝑅1 = 0.90, and 𝛼 = 𝛾 = 0.01 we get 𝑠 = 0.9603,
ℎ1 = 1.9163, ℎ2 = 1.9163 and ASN(0.9) = 31.17.

Exercise 9.29 Design a Wald SPRT for exponential life distribution, to discriminate
between 𝑅0 = 0.99 and 𝑅1 = 0.90, with 𝛼 = 𝛽 = 0.01. What is the expected sample
size, ASN, when 𝑅 = 0.90?

Solution 9.29 Without loss of generality, assume that 𝑡 = 1. Thus, 𝑅0 = 𝑒−1/𝛽0 =

0.99, or 𝛽0 = 99.5. Also, 𝑅1 = 0.9, or 𝛽1 = 9.49. The parameters of the SPRT are:
ℎ1 = 48.205, ℎ2 = 48.205 and 𝑠 = 24.652. 𝐴𝑆𝑁 (0.9) ≈ 3.

Exercise 9.30 𝑛 = 20 computer monitors are put on accelerated life testing. The test
is an SPRT for Poisson processes, based on the assumption that the TTF of a monitor,
in those conditions, is exponentially distributed. The monitors are considered to be
satisfactory if their MTBF is 𝛽 ≥ 2000 [hr] and considered to be unsatisfactory if
𝛽 ≤ 1500 [hr]. What is the expected length of the test if 𝛽 = 2000 [hr].

Solution 9.30 Using 𝛼 = 𝛾 = 0.05 we have 𝑛 = 20, 𝐻0 : 𝛽 = 2000, 𝐻1 : 𝛽 = 1500.
Thus, _0 = 0.0005 and _1 = 0.00067. The parameters of the SPRT are:

ℎ1 =
log( 95

5 )
log( _1

_0
)
= 10.061, ℎ2 = 10.061
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and

𝑠 =
_1 − _0

log( _1
_0
)
= 0.000581.

𝐸𝛽0 {𝜏} =
2000
20

𝐸𝛽{𝑋20 (𝜏)}

≈ 100
(

10.061 − 0.95 × 20.122
1 − 2000 × 0.000581

)
= 5589.44 [hr].

Exercise 9.31 A product has an exponential life time with MTTF 𝛽 = 1000 [hr]. 1%
of the products come out of production with MTTF of 𝛾 = 500 [hr]. A burn-in of
𝑡∗ = 300 [hr] takes place. What is the expected life of units surviving the burn-in? Is
such a long burn-in justified?

Solution 9.31 With 𝛽 = 1000, 𝑝 = 0.01, 𝛾 = 500 and 𝑡∗ = 300, we get

𝐹∗ (𝑡) = 1 − 0.01𝑒−𝑡/500 + 0.99𝑒−𝑡/1000

0.01𝑒−300/500 + 0.99𝑒−300/1000 , 𝑡 ≥ 300.

The expected life of units surviving the burn-in is thus,

factor = 0.01*np.exp(-300/500) + 0.99*np.exp(-300/1000)
integral = 0.01*500*np.exp(-300/500) + 0.99*1000*np.exp(-300/1000)
with_burn_in = 300 + integral/factor
no_burn_in = 0.01 * 500 + 0.99 * 1000
with_burn_in - no_burn_in

301.2862836203999

𝛽∗ = 300 + 1
0.7389

∫ ∞

300

(
0.01 exp

{
− 𝑡

500

}
+ 0.99 exp

{
− 𝑡

1000

})
d𝑡

= 300 + 5
0.7389

exp
{
−300

500

}
+ 990

0.7389
exp

{
− 300

1000

}
= 1296.29 [hr].

Without burn-in, the expected life of these units is 0.01∗500+0.99∗1000 = 995 [hr].
The expected life of the units in the field increases by 300 [hr].



Chapter 10
Bayesian Reliability Estimation and Prediction

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.formula.api as smf
import lifelines
import pingouin as pg
import seaborn as sns
import matplotlib.pyplot as plt
import mistat

Exercise 10.1 Suppose that the TTF of a system is a random variable having ex-
ponential distribution, 𝐸 (𝛽). Suppose also that the prior distribution of _ = 1/𝛽 is
𝐺 (2.25, 0.01).

(i) What is the posterior distribution of _, given 𝑇 = 150 [hr]?
(ii) What is the Bayes estimator of 𝛽, for the squared-error loss?

(iii) What is the posterior SD of 𝛽?

Solution 10.1 (i) Following Example 10.3, the posterior distribution of _ is

𝐺

(
a + 1,

𝜏

1 + 𝑥𝜏

)
= 𝐺

(
3.25,

0.01
1 + 150 × 0.01

)
= 𝐺 (3.25, 0.004)

The expected value of _ based on the prior distribution is 1
a𝜏

= 1
2.25×0.01 = 44.4. With

the updated posterior distribution, the expected value of _ increases to 1
3.25×0.004 =

76.9.
(ii) The Bayes estimator for 𝛽 is the expectation value of the gamma distribution.

Given𝐺 (3.25, 0.004), The posterior Bayes estimator is therefore a𝜏 = 3.25×0.004 =

0.013.
(iii) The posterior SD of 𝛽 is given by the standard deviation of the posterior

gamma distribution. 𝑆𝐷 = a𝜏2 = 0.000052. The prior SD of 𝛽 was larger, 0.000225.
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Exercise 10.2 Let 𝐽 (𝑡) denote the number of failures of a device in the time interval
(0, 𝑡]. After each failure the device is instantaneously renewed. Let 𝐽 (𝑡) have a
Poisson distribution with mean _𝑡. Suppose that _ has a gamma prior distribution,
with parameters a = 2 and 𝜏 = 0.05.

(i) What is the predictive distribution of 𝐽 (𝑡)?
(ii) Given that 𝐽 (𝑡)/𝑡 = 10, how many failures are expected in the next time unit?

(iii) What is the Bayes estimator of _, for the squared-error loss?
(iv) What is the posterior SD of _?

Solution 10.2 (i) The predictive distribution of 𝐽 (𝑡) is, 𝑃( 𝑗 ;_𝑡) with _ having a
gamma distribution 𝐺 (2, 0.05).

(ii) Given 𝑥 = 10, the posterior distribution of _ is

𝐺

(
a + 𝑥, 𝜏

1 + 𝜏

)
= 𝐺 (12, 0.0476)

The posterior expectation for _ is therefore 0.571× 𝑡. This is increased from the prior
expectation of 0.1 × 𝑡.

(iii) The Bayes estimator of _ is the mean of the gamma distribution. a𝜏 = 0.571.
(iv) The posterior SD of _ is a𝜏2 = 0.0272.

Exercise 10.3 The proportion of defectives, \, in a production process has a uniform
prior distribution on (0, 1). A random sample of 𝑛 = 10 items from this process
yields 𝐾10 = 3 defectives.

(i) What is the posterior distribution of \?
(ii) What is the Bayes estimator of \ for the absolute error loss?

Solution 10.3 (i) The uniform prior distribution on (0, 1) can be expressed as the
beta distribution 𝐵(1, 1). With the 𝐾10 = 3 defectives, the posterior distribution is
𝐵(1 + 3, 1 + 10 − 3) = 𝐵(4, 8).

(ii) The Bayes estimator of \ can be calculated using equation (10.2.2).

\̂ =
a1𝐹0.5 [2a1, 2a2]

a2 + a1𝐹0.5 [2a1, 2a2]
=

4𝐹0.5 [8, 16]
8 + 4𝐹0.5 [8, 16] ≈ 4 × 0.94422

8 + 4 × 0.94422
≈ 0.3207

Visualization of results:

x = np.linspace(0, 1, 100)
df = pd.DataFrame({'x': x, 'Bprior': stats.beta(1,1).pdf(x)})
df['Bposterior'] = stats.beta(1+3,1 + 10 - 3).pdf(x)

ax = df.plot(x='x', y='Bprior')
df.plot(x='x', y='Bposterior', ax=ax)
plt.show()
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Exercise 10.4 Let 𝑋 ∼ P(_) and suppose that _ has the Jeffrey improper prior
ℎ(_) = 1√

_
. Find the Bayes estimator for squared-error loss and its posterior SD.

Solution 10.4 The p.d.f. of 𝑋 is 𝑃(_). The prior distribution of _ is ℎ(_) = 1√
_

.
Therefore, the posterior PDF ℎ(_ |𝑥) is

ℎ(_ |𝑥) = 𝑃(𝑥;_)ℎ(_)∫ ∞
0 𝑃(𝑥;_)ℎ(_)d_

=

𝑒−__𝑥

𝑥!
1√
_∫ ∞

0
𝑒−__𝑥

𝑥!
1√
_

d_
=

𝑒−__𝑥 1√
_∫ ∞

0 𝑒−__𝑥 1√
_

d_
=

𝑒−__𝑥−
1
2∫ ∞

0 𝑒−__𝑥−
1
2 d_

=
𝑒−__𝑥−

1
2

Γ(𝑥 + 1
2 )

=
1

Γ(𝑥 + 1
2 )
_𝑥−

1
2 𝑒−_

= 𝐺

(
𝑥 + 1

2
, 1

)
The posterior distribution is the gamma distribution 𝐺 (𝑥 + 1

2 , 1).
The posterior Bayes estimator for _ is 𝑥 + 1

2 . The posterior SD is also 𝑥 + 1
2 .

Exercise 10.5 Apply formula (10.2.3) to determine the Bayes estimator of the relia-
bility when 𝑛 = 50 and 𝐾50 = 49.

Solution 10.5 Using formula (10.2.3), we get:
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n = 50; Kn = 49
medFdist = stats.f.ppf(0.5, 2*Kn+2, 2*n+2-2*Kn)
R_t = (Kn+1) * medFdist / (n+1 -Kn+(Kn+1)*medFdist)
R_t

0.9673091500837799

Exercise 10.6 A system has three modules, 𝑀1, 𝑀2, 𝑀3. 𝑀1 and 𝑀2 are connected
in series and these two are connected in parallel to 𝑀3, i.e.,

𝑅𝑠𝑦𝑠 = 𝜓𝑝 (𝑅3, 𝜓𝑠 (𝑅1, 𝑅2)) = 𝑅3 + 𝑅1𝑅2 − 𝑅1𝑅2𝑅3,

where 𝑅𝑖 is the reliability of module 𝑀𝑖 . The TTFs of the three modules are indepen-
dent random variables having exponential distributions with prior IG(a𝑖 , 𝜏𝑖) distribu-
tions of their MTTF. Moreover, a1 = 2.5, a2 = 2.75, a3 = 3, 𝜏1 = 𝜏2 = 𝜏3 = 1/1000.
In separate independent trials of the TTF of each module we obtained the statistics
𝑇
(1)
𝑛 = 4565 [hr], 𝑇 (2)

𝑛 = 5720 [hr] and 𝑇 (3)
𝑛 = 7505 [hr], where in all three exper-

iments 𝑛 = 𝑟 = 10. Determine the Bayes estimator of 𝑅𝑠𝑦𝑠, for the squared-error
loss.

Solution 10.6 We get for 𝑅𝑠𝑦𝑠:

v1 = 2.5; v2 = 2.75; v3 = 3; n=r=10
tau = 1/1000
T1 = 4565; T2 = 5720; T3 = 7505
def R(t, Ti, tau, r, v):

return ((1 + Ti*tau)/(1+(Ti + t)*tau))**(r+v)
t = np.linspace(0, 3000, 100)
df = pd.DataFrame({

't': t,
'R1': R(t, T1, tau, r, v1),
'R2': R(t, T2, tau, r, v2),
'R3': R(t, T3, tau, r, v3),

})
df['Rsys'] = df['R3'] + df['R1']*df['R2'] - df['R1']*df['R2']*df['R3']

Visualization of 𝑅𝑠𝑦𝑠 over time:

df.plot(x='t')
plt.show()
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Exercise 10.7 𝑛 = 30 computer monitors were put on test at a temperature of 100◦F
and relative humidity of 90% for 240 [hr]. The number of monitors which survived
this test is 𝐾30 = 28. Determine the Bayes credibility interval for 𝑅(240), at level
𝛾 = 0.95, with respect to a uniform prior on (0, 1).

Solution 10.7 Using equation (10.3.1), we get:

n = 30
Kn = 28
gamma = 0.95

v1 = Kn + 1; v2 = n - Kn + 1
eps1 = (1-gamma)/2; eps2 = (1+gamma)/2

F_ll = stats.f.ppf(eps2, 2*n+2-2*Kn, 2*Kn+2)
F_ul = stats.f.ppf(eps2, 2*Kn+2, 2*n+2-2*Kn)
print(f'F-distribution median: ({F_ll:.3f}, {F_ul:.3f})')
F_50 = stats.f.ppf(0.5, 2*Kn+2, 2*n+2-2*Kn)

R_t = (Kn+1)*F_50 / ((n+1-Kn) + (Kn+1)*F_50)
print(f'R(t): {R_t:.3f}')
LL = (Kn+1) / ((Kn+1) + (n-Kn+1)*F_ll)
UL = (Kn+1)*F_ul / ((n-Kn+1)+(Kn+1)*F_ul)
print(f'Credibility limits: ({LL:.3f}, {UL:.3f})')

F-distribution median: (2.635, 4.963)
R(t): 0.915
Credibility limits: (0.786, 0.980)

Exercise 10.8 Determine a 𝛾 = 0.95 level credibility interval for 𝑅(𝑡) at 𝑡 = 25 [hr]
when TTF ∼ 𝐸 (𝛽), 𝛽 ∼ IG(3, 0.01), 𝑟 = 27, 𝑇𝑛,𝑟 = 3500 [hr].

Solution 10.8 Using the results of Sect. 10.3.2, we get:

gamma = 0.95
t = 25
nu = 3
tau = 0.01
r = 27
Tnr = 3500
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eps1 = (1-gamma)/2; eps2 = (1+gamma)/2

beta_L = (Tnr + 1/tau) / stats.gamma.ppf(eps2, nu+r, 1)
beta_U = (Tnr + 1/tau) / stats.gamma.ppf(eps1, nu+r, 1)
print(f'Credibility limits beta: ({beta_L:.2f}, {beta_U:.2f})')

RL = np.exp(-t / beta_L)
RU = np.exp(-t / beta_U)
RL, RU
print(f'Credibility limits R(50): ({RL:.3f}, {RU:.3f})')

Credibility limits beta: (84.41, 169.48)
Credibility limits R(50): (0.744, 0.863)

Exercise 10.9 Under the conditions of Exercise 10.8 determine a Bayes prediction
interval for the total life of 𝑠 = 2 devices.

Solution 10.9 Using the results from Sect. 10.3.3, we get:

s = 2
eps1 = (1-gamma)/2; eps2 = (1+gamma)/2

# using beta
T_L = (Tnr + 1/tau)*(1/stats.beta.ppf(eps2, nu+r, s) - 1)
T_U = (Tnr + 1/tau)*(1/stats.beta.ppf(eps1, nu+r, s) - 1)
print(f'Prediction interval: ({T_L:.3f}, {T_U:.3f})')

# using F
T_L = (Tnr + 1/tau)*(s / (nu+r)) * stats.f.ppf(eps1, 2*s, 2*nu+2*r)
T_U = (Tnr + 1/tau)*(s / (nu+r)) * stats.f.ppf(eps2, 2*s, 2*nu+2*r)
print(f'Prediction interval: ({T_L:.3f}, {T_U:.3f})')

Prediction interval: (28.707, 721.838)
Prediction interval: (28.707, 721.838)

We have high confidence that the two devices will last for at least 1636 hours.

Exercise 10.10 A repairable system has exponential TTF and exponential TTR,
which are independent of each other. 𝑛 = 100 renewal cycles were observed. The
total times till failure were 10,050 [hr] and the total repair times were 500 [min].
Assuming gamma prior distributions for _ and ` with a = 𝜔 = 4 and 𝜏 = 0.0004
[hr], Z = 0.01 [min], find a 𝛾 = 0.95 level credibility interval for 𝐴∞.

Solution 10.10 Using the result from Sect. 10.4, we get:

n = 100
U = 10_050 # sum(TTF)
V = 500 / 60 # sum(TTR)

lambda_ = 1/U # ˜ G(nu, tau)
mu = 1/V # ˜ G(omega, zeta)
A_infty = mu / (mu + lambda_)
print(f'A_inf: {A_infty:.5f}')

# prior distributions
nu = 4; tau = 0.0004 # lambda˜G(2, 0.001)
omega = 4; zeta = 0.01 / 60 # mu˜G(2, 0.005)

# Crediblity interval
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gamma = 0.95
eps1 = (1-gamma)/2; eps2 = (1+gamma)/2

A_infty_eps1 = 1/(1 + (V+zeta)/(U+tau) *
stats.beta.ppf(eps2, n+nu, n+omega)/stats.beta.ppf(eps1, n+omega, n+nu))

A_infty_eps2 = 1/(1 + (V+zeta)/(U+tau) *
stats.beta.ppf(eps1, n+nu, n+omega)/stats.beta.ppf(eps2, n+omega, n+nu))

print(f'A_inf_eps1: {A_infty_eps1:.5f}')
print(f'A_inf_eps2: {A_infty_eps2:.5f}')

A_inf: 0.99917
A_inf_eps1: 0.99891
A_inf_eps2: 0.99937

Note that we converted the total repair time and Z from [min] to [h] here.

Exercise 10.11 In reference to Example 10.6, suppose that the data of Table 10.2
were obtained for a Poisson random variable where _1, · · · , _188 have a gamma (a, 𝜏)
prior distribution.

(i) What is the predictive distribution of the number of defects per batch?
(ii) Find the formulae for the first two moments of the predictive distribution.

(iii) Find, from the empirical frequency distribution of Table 10.2, the first two
sample moments.

(iv) Use the method of moment equations to estimate the prior parameters a and 𝜏.
(v) What is the Bayes estimator of _ if 𝑋189 = 8?

Solution 10.11 (i) Suppose that 𝑇 𝑃(_) and _ has a prior Gamma distribution
𝐺 (a, 𝜏). We get,

𝐸a,𝜏 = a𝜏

𝑉a,𝜏 = a𝜏2

The first two moments of the distribution are

𝑀1,𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝑡𝑖 = â𝜏

𝑀2,𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝑡2𝑖 = â𝜏2

This gives:

𝜏 =
𝑀2,𝑛

𝑀1,𝑛

â =
𝑀1,𝑛

𝜏
=
𝑀2

1,𝑛

𝑀2,𝑛

(iii) Using the empirical frequency distribution, we get for the sample moments:
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freq_dist = {
0: 4, 1: 21, 2: 29, 3: 32, 4: 19, 5: 14,
6: 13, 7: 5, 8: 8, 9: 5, 10: 9, 11: 1,
12: 2, 13: 4, 14: 4, 15: 1, 16: 4, 17: 2,
18: 1, 19: 1, 20: 1, 21: 1, 22: 1, 23: 2,
24: 1, 25: 2, 26: 1}

n = sum(count for value, count in freq_dist.items())
M_1 = sum(value * count for value, count in freq_dist.items()) / n
M_2 = sum(value * value * count for value, count in freq_dist.items()) / n
print(n, M_1, M_2)

188 6.037234042553192 68.48404255319149

(iv) The estimated prior parameters are, 𝜏 = 11.34 and â = 0.53 resulting in
_̂ = 6.037.

tau = M_2 / M_1
nu = M_1*M_1 / M_2
lambda_ = nu * tau
print(tau, nu, lambda_)

11.343612334801762 0.5322144185085728 6.037234042553193

(v) After observation of an additional 𝑋189 = 8, we get:

freq_dist[8] += 1
n = sum(count for value, count in freq_dist.items())
M_1 = sum(value * count for value, count in freq_dist.items()) / n
M_2 = sum(value * value * count for value, count in freq_dist.items()) / n

tau = M_2 / M_1
nu = M_1*M_1 / M_2
lambda_ = nu * tau
print(tau, nu, lambda_)

11.32020997375328 0.5342320559107019 6.0476190476190474

With the additional observation, _̂ = 6.048.



Chapter 11
Sampling Plans for Batch and Sequential
Inspection

For the most recent version of the solution manual, go to https://gedeck.
github.io/mistat-code-solutions/IndustrialStatistics/.

Import required modules and define required functions

import numpy as np
import pandas as pd
from scipy import stats, optimize
import statsmodels.formula.api as smf
import lifelines
import pingouin as pg
import seaborn as sns
import matplotlib.pyplot as plt
import mistat
from mistat import acceptanceSampling

Exercise 11.1 Determine single sampling plans for attributes, when the lot is 𝑁 =

2500, 𝛼 = 𝛽 = 0.01, and

(i) 𝐴𝑄𝐿 = 0.005, 𝐿𝑄𝐿 = 0.01
(ii) 𝐴𝑄𝐿 = 0.01, 𝐿𝑄𝐿 = 0.03

(iii) 𝐴𝑄𝐿 = 0.01, 𝐿𝑄𝐿 = 0.05

Solution 11.1 The single-sampling plans for attributes with 𝑁 = 2500, 𝛼 = 𝛽 =

0.01, and AQL and LQL as specified are (i) 𝑛 = 1878, 𝑐 = 13; (ii) 𝑛 = 702, 𝑐 = 12;
(iii) 𝑛 = 305, 𝑐 = 7.

Exercise 11.2 Investigate how the lot size, 𝑁 , influences the single sampling plans
for attributes, when 𝛼 = 𝛽 = 0.05, 𝐴𝑄𝐿 = 0.01, 𝐿𝑄𝐿 = 0.03, by computing the
plans for 𝑁 = 100, 𝑁 = 500, 𝑁 = 1000, 𝑁 = 2000.

Solution 11.2 For 𝛼 = 𝛽 = 0.05, 𝐴𝑄𝐿 = 0.01, and 𝐿𝑄𝐿 = 0.03 the single-sampling
plans for attributes are

147
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𝑁 𝑛 𝑐

100 87 1
500 254 4

1000 355 6
2000 453 8

We see that as the lot size, 𝑁 , increases then the required sample size increases, but
𝑛/𝑁 decreases from 87% to 22.6%. The acceptance number 𝑐 increases very slowly.

Exercise 11.3 Compute the 𝑂𝐶 (𝑝) function for the sampling plan computed in
Exercise 11.1(iii). What is the probability of accepting a lot having 2.5% of noncon-
forming items?

Solution 11.3 For the sampling plan in Exercise 11.1(iii),𝑂𝐶 (𝑝) = 𝐻 (7; 2500, 𝑀𝑝 , 305).
When 𝑝 = 0.025, we get 𝑀𝑝 = 62 and 𝑂𝐶 (0.025) = 0.5091.

Exercise 11.4 Compute the large sample approximation to a single sample plan for
attributes (𝑛∗, 𝑐∗), with 𝛼 = 𝛽 = 0.05 and 𝐴𝑄𝐿 = 0.025, 𝐿𝑄𝐿 = 0.06. Compare
these to the exact results. The lot size is 𝑁 = 2000.

Solution 11.4 The large sample approximation yields 𝑛∗ = 292, 𝑐∗ = 11. The “exact”
plan is 𝑛 = 311, 𝑐 = 12. Notice that the actual risks of the large sample approximation
plan (𝑛∗, 𝑐∗) are 𝛼∗ = 0.0443 and 𝛽∗ = 0.0543. The actual risks of the “exact” plan
are 𝛼 = 0.037 and 𝛽 = 0.0494.

Exercise 11.5 Repeat the previous Exercise with 𝑁 = 3000, 𝛼 = 𝛽 = 0.10, 𝐴𝑄𝐿 =

0.01 and 𝐿𝑄𝐿 = 0.06.

Solution 11.5 The large sample approximation is 𝑛∗ = 73, 𝑐∗ = 1 with actual risks
of 𝛼∗ = 0.16 and 𝛽∗ = 0.06. The exact plan is 𝑛 = 87, 𝑐 = 2 with actual risks of
𝛼 = 0.054 and 𝛽 = 0.097.

Exercise 11.6 Obtain the 𝑂𝐶 and 𝐴𝑆𝑁 functions of the double sampling plan, with
𝑛1 = 200, 𝑛2 = 2𝑛1 and 𝑐1 = 5, 𝑐2 = 𝑐3 = 15, when 𝑁 = 2000.

(i) What are the attained 𝛼 and 𝛽 when 𝐴𝑄𝐿 = 0.015 and 𝐿𝑄𝐿 = 0.05?
(ii) What is the 𝐴𝑆𝑁 when 𝑝 = 𝐴𝑄𝐿?

(iii) What is a single sampling plan having the same𝛼 and 𝛽? How many observations
we expect to save if 𝑝 = 𝐴𝑄𝐿? Notice that if 𝑝 = 𝐿𝑄𝐿 the present double
sampling plan is less efficient than the corresponding single sampling plan.

Solution 11.6 (i) The attained 𝛼 and 𝛽 are 𝛼 = 0.021, 𝛽 = 0.0532. (ii) ASN = 228.7.
(iii) The single-sampling plan is 𝑛 = 253, 𝑐 = 7 with 𝛼∗ = 0.0283, 𝛽∗ = 0.0486. If
𝑝 = 𝐴𝑄𝐿 we expect to save 24 observations.

Exercise 11.7 Compute the 𝑂𝐶 and 𝐴𝑆𝑁 values for a double sampling plan with
𝑛1 = 150, 𝑛2 = 200, 𝑐1 = 5, 𝑐2 = 𝑐3 = 10, when 𝑁 = 2000. Notice how high 𝛽
is when 𝐿𝑄𝐿 = 0.05. The present plan is reasonable if 𝐿𝑄𝐿 = 0.06. Compare this
plan to a single sampling one for 𝛼 = 0.02 and 𝛽 = 0.10, 𝐴𝑄𝐿 = 0.02, 𝐿𝑄𝐿 = 0.06.
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Solution 11.7 The double-sampling plan with 𝑛1 = 150, 𝑛2 = 200, 𝑐1 = 5, 𝑐2 =

𝑐3 = 10, and 𝑁 = 2000 yields

𝑝 OC(𝑝) ASN(𝑝) 𝑝 OC(𝑝) ASN(𝑝)

0 1.000 150 0.06 0.099 247.7
0.01 0.999 150.5 0.07 0.039 218.9
0.02 0.966 164.7 0.08 0.014 191.5
0.03 0.755 206.0 0.09 0.005 171.9
0.04 0.454 248.4 0.10 0.001 160.4
0.05 0.227 262.8

The single sampling plan for 𝛼 = 0.02, 𝛽 = 0.10, AQL= 0.02, LQL= 0.06 is 𝑛 = 210,
𝑐 = 8 with actual 𝛼 = 0.02, 𝛽 = 0.10.

Exercise 11.8 Determine a sequential plan for the case of AQL = 0.02, LQL = 0.06,
𝛼 = 𝛽 = 0.05. Compute the OC and ASN functions of this plan. What are the ASN
values when 𝑝 = AQL, 𝑝 = LQL and 𝑝 = 0.035?

Solution 11.8 For the sequential plan, 𝑂𝐶 (0.02) = 0.95 = 1 − 𝛼, 𝑂𝐶 (0.06) =

0.05 = 𝛽. ASN(0.02) = 140, ASN(0.06) = 99 and ASN(0.035) = 191.

Exercise 11.9 Compare the single sampling plan and the sequential one when AQL
= 0.01, LQL = 0.05, 𝛼 = 𝛽 = 0.01 and 𝑁 = 10, 000. What are the expected savings
in sampling cost, if each observation costs $1, and 𝑝 = AQL?

Solution 11.9 The single-sampling plan for𝑁 = 10, 000,𝛼 = 𝛽 = 0.01, 𝐴𝑄𝐿 = 0.01
and 𝐿𝑄𝐿 = 0.05 is 𝑛 = 341, 𝑐 = 8. The actual risks are 𝛼 = 0.007, 𝛽 = 0.0097.
The corresponding sequential plan, for 𝑝 = 𝐴𝑄𝐿 = 0.01 has 𝐴𝑆𝑁 (0.01) = 182. On
the average, the sequential plan saves, under 𝑝 = 𝐴𝑄𝐿, 159 observations. This is an
average savings of $159 per inspection.

Exercise 11.10 Use the mistat function simulateOAB to simulate the expected
rewards, for 𝑝 = 0.4(0.05)0.8, when 𝑁 = 75, _ = 0.6, 𝑘 = 15, 𝛾 = 0.95, 𝑁𝑠 = 1000.

Solution 11.10 In Python:

np.random.seed(1)

N=75; lambda_=0.6; k0=15; gamma=0.95; Ns=1000

results = []
for p in (0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8):
r = acceptanceSampling.simulateOAB(N, p, lambda_, k0, gamma, Ns)
results.append({

'p': p,
'Mgamma_mean': r.mgamma.mean,
'Mgamma_std': r.mgamma.std,
'Reward_mean': r.reward.mean,
'Reward_std': r.reward.std,

})
pd.DataFrame(results)
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p Mgamma_mean Mgamma_std Reward_mean Reward_std
0 0.40 22.639 11.931080 40.4016 0.904609
1 0.45 31.382 19.866758 40.3588 1.222515
2 0.50 42.608 24.492822 40.8492 2.075587
3 0.55 57.779 23.582794 42.6366 3.416241
4 0.60 66.750 18.822526 45.4380 4.143640
5 0.65 71.662 12.721154 49.1878 4.508895
6 0.70 73.924 7.576953 52.9706 4.282127
7 0.75 74.762 3.755710 57.0788 3.971714
8 0.80 74.945 1.738383 60.7050 3.518803

Exercise 11.11 Use the mistat function optimalOAB to predict the expected reward
under the optimal strategy, when 𝑁 = 75, _ = 0.6.

Solution 11.11 In Python:

result = acceptanceSampling.optimalOAB(75, 0.6)
print(f'Case (75, 0.6): {result.max_reward:.3f}')

Case (75, 0.6): 62.447

Exercise 11.12 Consider the two-armed bandit (TAB) with 𝑁 = 40 and 𝐾 = 10.
Make a table of all the possible predicted rewards.

Solution 11.12 We first define a function that calculates the expected reward for the
TAB strategy under the assumption of a beta(1, 1) prior.

def TAB(N, k, Xk):
# case: no reward for the first k // 2 trials - switch
if Xk == 0:

# calculate posterior based on no successes in k//2 trials
m = k//2
p_post = (1 + 0) / (1 + 1 + m)
return acceptanceSampling.optimalOAB(N - m, p_post).max_reward

# calculate posterior based on Xk successes in k trials
p_post = (1 + Xk) / (1 + 1 + k)
# case: only successes in trials stay in arm A
if Xk == k:

return k + (N-k) * p_post
# switch to arm B and use posterior propability for
# optimal OAB strategy
return Xk + acceptanceSampling.optimalOAB(N-k, p_post).max_reward

Using the function we get the following expected rewards as a function of 𝑋10

pd.DataFrame({
'X10': list(range(0, 11)),
'Expected reward': [TAB(40, 10, Xk) for Xk in range(0, 11)],

})

X10 Expected reward
0 0 26.331820
1 1 23.597716
2 2 24.782446
3 3 26.078104
4 4 27.487403
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5 5 29.020577
6 6 30.662946
7 7 32.475568
8 8 34.380689
9 9 36.500000
10 10 37.500000

Exercise 11.13 Determine 𝑛 and 𝑘 for a continuous variable size sampling plan,
when (𝑝0) = 𝐴𝑄𝐿 = 0.01 and (𝑝𝑡 ) = 𝐿𝑄𝐿 = 0.05, 𝛼 = 𝛽 = 0.05.

Solution 11.13 For a continuous variable-size sampling plan when (𝑝0) = AQL =
0.01, (𝑝𝑡 ) = LQL = 0.05, and 𝛼 = 𝛽 = 0.05, we obtain 𝑛 = 70 and 𝑘 = 1986.

Exercise 11.14 Consider dataset ALMPIN.csv. An aluminum pin is considered as
defective if its cap diameter is smaller than 14.9 [mm]. For the parameters 𝑝0 = 0.01,
𝛼 = 0.05, compute 𝑘 and decide whether to accept or reject the lot, on the basis of
the sample of 𝑛 = 70 pins. What is the probability of accepting a lot with proportion
defectives of 𝑝 = 0.03?

Solution 11.14 From the data we get �̄� = 14.9846 and 𝑆 = 0.019011. For 𝑝0 = 0.01
and 𝛼 = 0.05 we obtain 𝑘 = 2.742375. Since �̄� − 𝑘𝑆 = 14.9325 > Z = 14.9, the lot
is accepted. 𝑂𝐶 (0.03) ≈ 0.4812.

Exercise 11.15 Determine the sample size and 𝑘 for a single sampling plan by a
normal variable, with the parameters 𝐴𝑄𝐿 = 0.02, 𝐿𝑄𝐿 = 0.04, 𝛼 = 𝛽 = 0.10.

Solution 11.15 For 𝐴𝑄𝐿 = 0.02, 𝐿𝑄𝐿 = 0.04 and 𝛼 = 𝛽 = 0.10, 𝑛 = 201,
𝑘 = 1.9022.

Exercise 11.16 A single sampling plan for attributes, from a lot of size 𝑁 = 500, is
given by 𝑛 = 139 and 𝑐 = 3. Each lot that is not accepted is rectified. Compute the
𝐴𝑂𝑄, when 𝑝 = 0.01, 𝑝 = 0.02, 𝑝 = 0.03 and 𝑝 = 0.05. What are the corresponding
𝐴𝑇𝐼 values?

Solution 11.16 For a single-sampling plan for attributes where 𝑛 = 139, 𝑐 = 3
and 𝑁 = 500 we obtain 𝑂𝐶 (𝑝) = 𝐻 (3; 500, 𝑀𝑝 , 139), and 𝑅∗ = 𝐻 (2; 499, 𝑀𝑝 −
1, 138)/𝐻 (3; 500, 𝑀𝑝 , 139).

𝑝 𝐴𝑂𝑄 𝐴𝑇𝐼

0.01 0.0072 147.2
0.02 0.0112 244.2
0.03 0.0091 369.3
0.05 0.0022 482.0

Exercise 11.17 A single sampling plan, under normal inspection has probability
𝛼 = 0.05 of rejection, when 𝑝 = 𝐴𝑄𝐿. What is the probability, when 𝑝 = 𝐴𝑄𝐿 in
5 consecutive lots, that there will be a switch to tightened inspection? What is the
probability of switching to a tightened inspection if 𝑝 increases so that𝑂𝐶 (𝑝) = 0.7?
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Solution 11.17 A switch to a tightened plan, when all 5 consecutive lots have 𝑝 =

𝐴𝑄𝐿, with 𝛼 = 0.05, is
∑5

𝑗=2 𝑏( 𝑗 ; 5, 0.05) = 0.0226. The probability of switching
to a tightened plan if 𝛼 = 0.3 is 0.4718.

Exercise 11.18 Compute the probability for qualifying for State 2, in a skip-lot
sampling plan, when 𝑛 = 100, 𝑐 = 1. What is the upper bound on 𝑆10, in order to
qualify for State 2, when 𝐴𝑄𝐿 = 0.01? Compute the probability 𝑄𝑃 for State 2
qualification.

Solution 11.18 The total sample size from 10 consecutive lots is 1000. Thus, from
Table 11.15 𝑆10 should be less than 5 (note that the tables shows %AQL). The last
2 samples should each have less than 2 defective items. Hence, the probability for
qualification is

𝑄𝑃 = 𝑏2 (1; 100, 0.01)𝐵(2; 800, 0.01)
+ 2𝑏(1; 100, 0.01)𝑏(0; 100, 0.01)𝐵(3; 800, 0.01)
+ 𝑏2 (0; 100, 0.01)𝐵(4; 800, 0.01)
= 0.0263.

Exercise 11.19 The FAILURE J2 dataset contains the cumulative failure counts of
a software project collected over a period of 181 weeks. Fit the following models to
the data and visualize the results.

• Goel-Okumoto 𝑓 (𝑡) = 𝑎[1 − exp(−𝑏𝑡)]
• Musa-Okumoto 𝑓 (𝑡) = 1

𝜑
log(_0𝜑𝑡 + 1)

• S-shaped Yamada 𝑓 (𝑡) = 𝑎(1 − (1 + 𝑏𝑡) exp(−𝑏𝑡))
• inflected S-shaped Ohba 𝑓 (𝑡) = 𝑎 (1−exp(−𝑏𝑡 ) )

1+𝑐 exp(−𝑏𝑡 )

Which model describes the data best?

Solution 11.19 Define function for the four models

def modelGoelOkumoto(t, a, b):
return a * (1 - np.exp(-b * t))

def modelMusaOkumoto(t, phi, lam):
return (1/phi) * np.log(lam*phi* t + 1)

def modelYamada(t, a, b):
return a * (1 - (1+b*t)*np.exp(-b*t))

def modelInflectedSshaped(t, a, b, c):
return a * (1 - np.exp(-b * t)) / (1 + c * np.exp(-b * t))

Fit the four functions to the cumulative failure count data CFC

def optimizeModelFit(model, data, x, y):
fit = optimize.curve_fit(model, data[x], data[y], method='lm')
popt = fit[0]
# add the fit curve to the data
data[model.__name__] = [model(t, *popt) for t in data[x]]
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Fig. 11.1: NHPP models fitted to cumulative failure count data FAILURE J2

return popt
data = mistat.load_data('FAILURE_J2')
optimizeModelFit(modelGoelOkumoto, data, 'T', 'CFC')
optimizeModelFit(modelMusaOkumoto, data, 'T', 'CFC')
optimizeModelFit(modelYamada, data, 'T', 'CFC')
optimizeModelFit(modelInflectedSshaped, data, 'T', 'CFC')

array([2.26933527e+02, 5.40121092e-02, 5.96246327e+01])

The fits are shown in Fig. 11.1. The inflected S-shaped model describes the data
best.

Exercise 11.20 Continuing with Exercise 11.19, simulate cases where you only have
data for the first 25, 50, 75, 100, or 125 weeks and fit Goel-Okumoto and inflected
S-shaped models to these subsets.

Discuss the results with respect to using the models to extrapolate the expected
failure count to predict the expected failure count into the future.

Solution 11.20 Modify the optimizeModelFit function from the previous exercise to
restrict the fit to a subset of the data. The
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Fig. 11.2: NHPP models fitted to cumulative failure count data FAILURE J2 using
subsets. The actual data are shown in grey, the Goel-Okumoto fits as dotted black
lines, and the inflected S-shaped models as solid black lines. The vertical line shows
the cutoff used for subsetting the data for the fits.

def optimizeModelFit(model, data, x, y, subset):
# create the subset
subsetX = data[x][:subset]
subsetY = data[y][:subset]
# fit curve to subset - a increase of maxfev is required
fit = optimize.curve_fit(model, subsetX, subsetY,

method='lm', maxfev=2000)
popt = fit[0]
data[f'{model.__name__} {subset}'] = [model(t, *popt) for t in data[x]]
return popt

for subset in [25, 50, 75, 100, 125, 150]:
optimizeModelFit(modelGoelOkumoto, data, 'T', 'CFC', subset)
optimizeModelFit(modelInflectedSshaped, data, 'T', 'CFC', subset)

The result of this simulation is shown in Fig. 11.2. As in the previous exercise,
the inflected S-shaped model performs best. However, the fit using only 25 weeks of
data is insufficient to extrapolate into the future. With 50 or 75 weeks of data, the
inflected S-shaped model predicts the following 20-30 weeks well. Shortly after 100
weeks, the cumulative failure count curve flattens. This is not predicted by the model
fit. Even with 125 weeks of data, this is not well described. Only at 150 weeks, the
inflected S-shaped model starts to shows flattening.

Exercise 11.21 The dataset FAILURE DS2 contains cumulative failure counts of
a software project collected over a period of 18 weeks. Fit an inflected S-shaped
models to these data.
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You will see that the large initial number of failures leads to an insufficient fit
of the data. Create a second fit where the initial number of failures is ignored and
discuss the results.

Solution 11.21 Load the data and fit the model
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Fig. 11.3: NHPP models fitted to cumulative failure count data FAILURE DS2.
Left: initial model, right: after correction

data = mistat.load_data('FAILURE_DS2')
fit = optimize.curve_fit(modelInflectedSshaped, data['T'], data['CFC'])
popt = fit[0]

# add the fit curve to the data and visualize
data['Model'] = [modelInflectedSshaped(t, *popt) for t in data['T']]

ax = data.plot(x='T', y='CFC', color='grey')
data.plot(x='T', y='Model', color='black', ax=ax)
plt.show()

The result of this simulation is shown in Fig. 11.3. It is clear that the fit could be
better if the model ignores the initial failure count. Define a new model to correct
for this problem.

initial = data['CFC'][0]
def correctedModel(t, a, b, c):

return modelInflectedSshaped(t, a, b, c) + initial

fit = optimize.curve_fit(correctedModel, data['T'], data['CFC'])
popt = fit[0]
# add the fit curve to the data and visualize
data['Corrected Model'] = [correctedModel(t, *popt) for t in data['T']]

ax = data.plot(x='T', y='CFC', color='grey')
data.plot(x='T', y='Model', color='black', ax=ax, linestyle=':')
data.plot(x='T', y='Corrected Model', color='black', ax=ax)
plt.show()

Including the offset in the model, leads to a better fit of the data.
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