
Machine Learning with Tidymodels
R for exploratory data analysis and statistical modeling

Peter Gedeck

2026-01-26

Table of contents

Introduction 3
Tidyverse . 3
Tidymodels . 4
Getting Help . 4
RStudio . 4

I Exploratory data analysis 5

1 Data loading and cleaning 6
1.1 Load data . 6
1.2 Inspect data to identify missing values . 7
1.3 Identifying outliers . 9
1.4 Summary . 11
Code . 11

2 Manipulating data 13
2.1 Example: manipulating flights data . 13
2.2 Overview of dplyr functionality . 15

2.2.1 Sorting data . 15
2.2.2 Selecting columns . 17
2.2.3 Filtering rows . 18
2.2.4 Modifying tables . 23

2.3 Handling missing values . 25
2.3.1 Convert placeholders to missing values 25
2.3.2 Remove or replace missing values . 26

2.4 Split - Apply - Combine . 27
2.4.1 Two examples . 27
2.4.2 Applying functions to groups adding to the original table 29
2.4.3 Shortcuts . 30

2.5 Concatenate and join data . 31
2.5.1 Concatenating data . 31
2.5.2 Joins . 32

2.6 Additional tidyr functions . 33
Code . 33

2

3 Data visualization 38
3.1 ggplot2 — the basics . 38
3.2 Visualizing a single variable . 42
3.3 Visualizing two variables . 46
3.4 Visualizing multiple variables . 51
3.5 Saving plots to file . 54
3.6 autoplot and autolayer functions . 54
Code . 56

4 Interactive visualization 60
4.1 plotly in R. 60
4.2 Two dimensional scatter plot using plot_ly . 60
4.3 Add interactivity to ggplot figure using ggplotly 63
4.4 Three dimensional plots using plot_ly . 64
Code . 67

II Training models 68

5 Training predictive models 69
5.1 What is tidymodels? . 69
Code . 70

6 Workflows: Connecting the parts 71
6.1 Workflows in tidymodels . 72
6.2 Workflow example . 74
6.3 Models vs. workflows . 74

7 Data preprocessing 76
7.1 Preprocessing data with recipes . 77
7.2 Transformations of individual features . 81
7.3 Discretizing numeric variables . 83
7.4 Data normalization . 87
7.5 Imputing missing data . 88
7.6 Dummy variables . 91
7.7 Interactions . 93
7.8 Principal components . 97
7.9 Filtering variables . 98
Code . 99

3

III Regression models 105

8 Training regression models using tidymodels 106
8.1 The mtcars dataset . 106
8.2 Predicting mpg in the mtcars dataset using tidymodels 108
Code . 112

9 Measuring performance of regression models 114
9.1 Build a regression model . 115
9.2 Calculate performance metrics . 115
Code . 117

IV Classification models 118

10 Training classification models using tidymodels 119
10.1 The UniversalBank dataset . 120
10.2 Tidymodels: predicting Personal.Loan in the UniversalBank dataset 122
10.3 Visualizing the overall model performance using a ROC curve 125
Code . 128

11 Measuring performance of classification models 130
11.1 Classification metrics . 131

11.1.1 Specifying the event of interest . 134
11.1.2 Thresholds . 135

11.2 Class probability metrics . 138
11.3 Additional curves . 143
Code . 144

V Validating and tuning models 148

12 Sampling from a dataset 149
12.1 Sampling in statistical modeling . 151
12.2 Creating an initial split of the data into training and holdout set 154
12.3 Creating an initial split of the data into training, validation, and holdout set . 155
Code . 156

13 Validating models 157
13.1 Model validation using holdout set . 158
13.2 Model validation using cross-validation . 159
13.3 Model validation using bootstrapping . 165

13.3.1 Distribution of metrics for bootstrap samples 169
Code . 171

4

14 Model tuning - the basics 177
14.1 Specifying tunable parameters . 178
14.2 Data-specific tuning parameters . 180
14.3 Tuning a workflow . 182
14.4 Grid search strategies . 186
14.5 Bayesian Hyperparameter optimization . 191
Code . 194

15 Model tuning - examples 198
15.1 Feature engineering . 199

15.1.1 Polynomial regression . 199
15.1.2 Step function regression . 201
15.1.3 Spline regression . 205

15.2 Regularization . 207
15.3 Feature selection . 209
15.4 Hyperparameter tuning . 213

15.4.1 Define the hyperparameter search space 213
15.4.2 Tune the threshold . 219

15.5 The one-standard-error rule . 221
Code . 223

16 Stacking models 233
Code . 234

17 Model deployment 235
17.1 Model packaging and infrastructure . 235
17.2 Deployment Strategies . 236
17.3 Monitoring and maintenance (post-deployment) 236
17.4 R: the vetiver package . 236

VI Unsupervised learning 238

18 Dimensionality reduction 239
18.1 Principal component analysis (PCA) . 239

18.1.1 PCA . 239
18.1.2 Truncated PCA . 243
18.1.3 Sparse principal component analysis (SPCA) 244

18.2 Kernel PCA . 245
18.3 UMAP . 247
18.4 Isomap (multi-dimensional scaling, MDS) . 249
18.5 Partial Least Squares (PLS) . 250
Code . 252

5

19 Clustering 256
19.1 k-means clustering . 256
19.2 Hierarchical clustering . 261
19.3 Determine the number of clusters . 265
Code . 268

VII Model deep dives 272

20 Linear regression models 273
20.1 Build a linear regression model . 273
20.2 Analyze model parameters . 273
20.3 Extract model statistics . 275
20.4 Diagnostics plots . 275

20.4.1 Residuals vs Fitted . 275
20.4.2 Normal Q-Q plot . 276
20.4.3 Scale-location plot . 276
20.4.4 Cook’s distance plot . 277
20.4.5 Residuals vs Leverage . 277
20.4.6 Cooks’s distance vs Leverage . 278

Code . 278

21 Regularized Generalized linear models (glmnet) 280
21.1 GLM implementation glmnet . 280
21.2 glmnet in tidymodels . 281

21.2.1 Coefficients - one of many . 281
21.2.2 Plotting the coefficients . 283

Code . 285

22 Generalized additive models (GAM) 287
22.1 Specifying GAMs in formula notation . 287
22.2 GAMs in Tidymodels . 288
22.3 Example: GAM for the mpg dataset . 288

22.3.1 Utility functions . 288
22.3.2 Linear regression model . 289
22.3.3 GAM with splines . 291
22.3.4 GAM in workflows . 292

22.4 Using the plot function of the mgcv model . 294
Code . 296

23 Visualizing decision tree models 300
23.1 Classification Trees . 300

23.1.1 Visualizing the tree (graph) . 301

6

23.1.2 Visualizing the tree (text) . 302
23.1.3 Visualizing the tree (rules) . 303

23.2 Regression Trees . 304
23.2.1 Visualizing the tree (graph) . 305

Code . 307

24 Variable or feature importance 309
24.1 The vip package . 309
24.2 Model specific measures of variable importance 310

24.2.1 Linear model . 310
24.2.2 Random forests . 311

24.3 General approaches to calculate variable importance 312
Code . 315

VIIIExamples 318

25 Model tuning 319
Code . 322

26 Threshold selection 325
Code . 329

Appendices 332

A Models 332
A.1 Non-informative model null_model (regression and classification) 333
A.2 Linear regression models linear_reg (regression) 334

A.2.1 lm engine (default) . 334
A.2.2 glm engine (generalized linear model) 334
A.2.3 glmnet engine (regularized linear regression) 335

A.3 Partial least squares regression pls (regression) 335
A.3.1 mixOmics engine (default) . 335

A.4 Logistic regression models logistic_reg (classification) 336
A.4.1 glm engine (default) . 336
A.4.2 glmnet engine (regularized logistic regression) 337

A.5 Nearest Neighbor models (classification and regression) 337
A.5.1 kknn engine (default) . 337

A.6 Linear discriminant analysis discrim_linear (classification) 338
A.6.1 MASS engine (default) . 338

A.7 Quadratic discriminant analysis discrim_quad (classification) 339
A.7.1 MASS engine (default) . 339

7

A.8 Generalized additive models gen_additive_mod (regression and classification) . 339
A.8.1 mgcv engine (default) . 340

A.9 Decision tree models decision_tree (classification, regression, and censored
regression) . 340
A.9.1 rpart engine (default) . 340
A.9.2 partykit engine . 341

A.10 Ensemble models I bag_tree (classification and regression) 341
A.10.1 rpart engine (default) . 342

A.11 Ensemble models II boost_tree (classification and regression) 342
A.11.1 xgboost engine (default) . 342
A.11.2 lightgbm engine . 343

A.12 Ensemble models III rand_forest (classification and regression) 344
A.12.1 ranger engine (default) . 344
A.12.2 randomForest engine . 345

A.13 Support vector machines I svm_linear (classification and regression) 346
A.13.1 LiblineaR engine (default) . 346
A.13.2 kernlab engine . 347

A.14 Support vector machines II svm_poly (classification and regression) 348
A.14.1 kernlab engine (default) . 348

A.15 Support vector machines III svm_rbf (classification and regression) 348
A.15.1 kernlab engine (default) . 349

B Defining models using formulae 350
B.1 Linear models . 350
B.2 Linear models with interactions . 351
B.3 Linear models with transformations . 352
B.4 Miscellaneous . 353

C Markdown and R Markdown 354
C.1 General syntax . 354
C.2 Code chunks . 354
C.3 Chunk options . 355
C.4 Figures . 355
C.5 Referencing R variables in text . 357
C.6 Troubleshooting . 357

C.6.1 ! LaTeX Error: Unicode character ^^[(U+001B) 357

D Technical details 359
D.1 Parallel processing . 359
D.2 Caching . 363

References 367

8

Introduction

In the DS-6030 Statistical Learning course, we will use

• the tidyverse packages for data loading and processing
• the tidymodels packages for model building and validation

Compared to the classical base-R packages covered in An Introduction to Statistical Learning
(James et al. 2021), these packages offer many advantages that will make working with data
easier and more streamlined.

Tidyverse

The tidyverse is a collection of packages that share a common design philosophy and are
designed to work together. Hadley Wickham outlined the principles of the tidyverse in 2014
in the Tidy Data paper published in the Journal of Statistical Software 59(10), 1–23.

To load the tidyverse, use the following command:

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.2 v tibble 3.3.0
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.0.4
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

You will see that this loads a number of packages. The most important ones are:

• ggplot2 for plotting
• dplyr for data manipulation

9

https://www.jstatsoft.org/article/view/v059i10
https://www.jstatsoft.org/article/view/v059i10

• readr for data import
• tibble for improved data frames
• tidyr for getting data into tidy form
• purrr for functional programming
• stringr for string manipulation
• forcats for categorical/factor data

Tidymodels

The tidymodels package was first released in 2018 and is still under active development and
maintained by the company Posit as an open source project. It is an ecosystem of packages
that share a common design philosophy and are designed to work together. The packages
include

• parsnip for model specification
• recipes for data preprocessing
• rsample for resampling
• yardstick for model evaluation
• tune for hyperparameter tuning
• workflows for modeling workflows
• tidyposterior for Bayesian modeling

The tidymodels packages are designed to work with the tidyverse and tidydata principles. The
packages are designed to be modular and extensible.

Getting Help

• A good source of basic data analysis using R is found in the free book R for Data Science
(2e) by Wickham et al. (Wickham, Çetinkaya-Rundel, and Grolemund 2023).

• Web search, especially stackoverflow.com and stats.stackexchange.com
• Troubleshooting/Debugging.

– Check one line of code at a time.
– Google your error message
– Use scripts

RStudio

• Install R and RStudio
• Make use of Projects in RStudio

10

https://r4ds.hadley.nz/
https://r4ds.hadley.nz/

Part I

Exploratory data analysis

11

1 Data loading and cleaning

The objective of exploratory data analysis is to understand your data, find patterns, identify
outliers, and possibly form hypotheses for further analysis. In this chapter, we will use the
penguins dataset to learn how to load data, inspect it, and process it by removing missing
values and outliers. The following Chapter 2 will cover more details on data transformation.
Chapter 3 will cover data visualization.

Let’s start with loading the tidyverse packages:

library(tidyverse)
library(DT)

1.1 Load data

We use the function readr::read_csv to load the data. This function and its variations like
readr::read_delim are able to read a wide variety of formats (e.g. CSV, TSV, Excel). Here,
we read a compressed file in comma separated (csv) format.

penguins <- readr::read_csv("data/penguins_modified.csv.gz")

Rows: 347 Columns: 7
-- Column specification --
Delimiter: ","
chr (3): species, island, sex
dbl (4): bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

We learn that the data set contains 347 observations with 7 columns.1 Three of the
columns are string (chr : species, island, sex), the rest are numeric (dbl: bill_length_mm,
bill_depth_mm, flipper_length_mm, body_mass_g). It is useful to know the data types of

1Note: we use a modified version of the original dataset here

12

the imported data, because they determine what operations can be performed on the data.
However, the extensive output will clutter the document. You can suppress the output by
adding the argument show_col_types = FALSE to the read_csv function:

penguins <- readr::read_csv("data/penguins_modified.csv.gz",
show_col_types = FALSE)

Note that the command read_csv is spelt similarly to the base-R function read.csv. To
avoid confusion, we use the notation readr::read_csv to indicate that we use the function
read_csv from the package readr.

LIGHTBULB Todo

Read the help page for readr::read_csv and find out what the arguments file, delim,
comment, and skip do.

1.2 Inspect data to identify missing values

The data is now stored in the variable penguins as a tibble. A tibble is the tidyverse form of
a data frame. It is a bit more strict than a data frame, but also more consistent. Let’s have a
look at the first few rows of the data:

penguins

A tibble: 347 x 7
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
7 Adelie Torgersen 38.9 17.8 181 3625
8 Adelie Torgersen 39.2 19.6 195 4675
9 Adelie Torgersen 34.1 18.1 193 3475
10 Adelie Torgersen 42 20.2 190 4250
i 337 more rows
i 1 more variable: sex <chr>

13

https://readr.tidyverse.org/reference/read_delim.html

Compared to standard data frames, this is a more informative representation of your data. It
shows the first few rows, the column names, and the data types of the columns. The data
types are important, because they determine what you can do with the data.

A useful first step is to check for missing data. We can already see in the output above, that
the dataset contains missing values indicated by NA. There are various ways of doing this. One
way is to use the function is.na to check for missing values in each column:

colSums(is.na(penguins))

species island bill_length_mm bill_depth_mm
0 0 2 2

flipper_length_mm body_mass_g sex
2 2 11

Several columns contain missing values. Here are the rows with missing values:

penguins[rowSums(is.na(penguins)) > 0,]

A tibble: 11 x 7
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Adelie Torgersen NA NA NA NA
2 Adelie Torgersen 34.1 18.1 193 3475
3 Adelie Torgersen 42 20.2 190 4250
4 Adelie Torgersen 37.8 17.1 186 3300
5 Adelie Torgersen 37.8 17.3 180 3700
6 Adelie Dream 37.5 18.9 179 2975
7 Gentoo Biscoe 44.5 14.3 216 4100
8 Gentoo Biscoe 46.2 14.4 214 4650
9 Gentoo Biscoe 47.3 13.8 216 4725
10 Gentoo Biscoe 44.5 15.7 217 4875
11 Gentoo Biscoe NA NA NA NA
i 1 more variable: sex <chr>

With just a few missing values in the dataset, we can simply remove them. This is done with
the function drop_na.

df <- penguins %>%
drop_na()

14

The pipe operator %>% (pronounced as then) is used to chain commands together. The com-
mand penguins %>% drop_na() takes the data frame penguins and passes it to the function
drop_na. The statement is equivalent to:

df <- drop_na(penguins)

The real power of the pipe operator becomes apparent when we combined multiple commands
in a processing pipeline. The function drop_na removes all rows that contain at least one
missing value. You can also specify which columns to check. This restricts the check to
specific columns. For example, the following command removes all rows that contain missing
values in the columns bill_length_mm and bill_depth_mm:

df <- penguins %>%
drop_na(bill_length_mm, bill_depth_mm)

1.3 Identifying outliers

The tidyverse comes with a powerful plotting package called ggplot2. We will use the ggplot2
package throughout this class. To get started, we look at the values of the numerical columns
to get a feel for the data. Here is a graph (Figure 1.1) of the values of the bill_length_mm
column:

df <- penguins %>%
drop_na() %>%
mutate(id = row_number())

ggplot(df, aes(x = id, y = bill_length_mm)) + geom_line()

100

200

300

400

0 100 200 300
id

bi
ll_

le
ng

th
_m

m

Figure 1.1: Values of the bill_length_mm column.

We first create a temporary tibble df that contains the id column and the bill_length_mm
column. The id column is just a sequence of numbers from 1 to 347. We use this column to

15

plot the values of bill_length_mm against the row number. The geom_line function adds a
line plot to the plot. The result is a line plot of the values of bill_length_mm against the
row number. We can see that the values are mostly between 30 and 60, but there are some
outliers. The values are:

penguins %>%
mutate(id = row_number(), .before = species) %>%
slice(19:25) %>%
datatable(rownames = FALSE)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/Rtmpq5jbxi/file15c8e7558f57f/widget15c8e235da109.html screenshot completed

Show 10 entries Search:

Showing 1 to 7 of 7 entries Previous 1 Next

19 Adelie Torgersen 34.4 18.4 184 3325 female

20 Adelie Torgersen 46 21.5 194 4200 male

21 Adelie Torgersen 391 18.7 181 3750 male

22 Adelie Torgersen 395 17.4 186 3800 female

23 Adelie Torgersen 403 18 195 3250 female

24 Adelie Biscoe 37.8 18.3 174 3400 female

25 Adelie Biscoe 37.7 18.7 180 3600 male

id▲▼ species▲▼ island ▲
▼ bill_length_mm▲▼ bill_depth_mm▲▼ flipper_length_mm▲▼ body_mass_g▲▼ sex ▲

▼

We can see that rows 21, 22, and 23 have values that are around 10 times higher than all other
values. It’s likely that these values are due to an error in the data collection process. We can
remove these values with the following command:

df <- penguins %>%
drop_na() %>%
filter(bill_length_mm < 100)

LIGHTBULB Todo

Check if any of the other numerical columns contain outliers.

16

1.4 Summary

In this chapter, we have learned how to load data, inspect it, and process it. We have also
learned how to remove missing values and outliers.

The analysis of this chapter results in the following processing pipeline:

filename <- "data/penguins_modified.csv.gz"
penguins <- readr::read_csv(filename) %>%
drop_na() %>%
filter(bill_length_mm < 100)

Rows: 347 Columns: 7
-- Column specification --
Delimiter: ","
chr (3): species, island, sex
dbl (4): bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

INFO Further information

The data import cheatsheet is a short summary of all the main features of readr and
readxl. For more details see https://readr.tidyverse.org/. The readxl package allows
to import Excel files, see https://readxl.tidyverse.org/.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE, fig.align = "center")
library(tidyverse)
library(DT)
penguins <- readr::read_csv("data/penguins_modified.csv.gz")
penguins <- readr::read_csv("data/penguins_modified.csv.gz",
show_col_types = FALSE)

penguins
colSums(is.na(penguins))
penguins[rowSums(is.na(penguins)) > 0,]

17

https://rawgit.com/rstudio/cheatsheets/master/data-import.pdf

df <- penguins %>%
drop_na()

df <- penguins %>%
drop_na(bill_length_mm, bill_depth_mm)

df <- penguins %>%
drop_na() %>%
mutate(id = row_number())

ggplot(df, aes(x = id, y = bill_length_mm)) + geom_line()
penguins %>%
mutate(id = row_number(), .before = species) %>%
slice(19:25) %>%
datatable(rownames = FALSE)

df <- penguins %>%
drop_na() %>%
filter(bill_length_mm < 100)

filename <- "data/penguins_modified.csv.gz"
penguins <- readr::read_csv(filename) %>%
drop_na() %>%
filter(bill_length_mm < 100)

18

2 Manipulating data

The dplyr package is the main component of the tidyverse for data manipulation. You can
load it either by loading the tidyverse package or by loading dplyr directly.

library(tidyverse) # or library(dplyr)

2.1 Example: manipulating flights data

We’ve already seen some of the basic functions in Chapter 1. Let’s look at a more elaborate
example using a dataset from the nycflights13 package. This package contains information
about all flights that departed from NYC (e.g., EWR, JFK and LGA) in 2013. The dataset
is quite large and includes information on delays, airlines, airports, weather, and planes. It
contains 336,776 rows and 19 columns.

We first load the nycflights13 package to get the flights dataset.

library(nycflights13) # load flight data
dim(flights)

[1] 336776 19

For our analysis, we want to focus on flights that were less than 1000 miles (distance) and re-
strict the dataset to keep only the columns: dep_delay, arr_delay, origin, dest, air_time,
and distance. In addition, we convert the departure and arrival delays into hours, and cal-
culate the average flight speed (in mph). We also want to add a new column with the Z-score
for departure delays. Finally, we want to order by average flight speed (fastest to slowest) and
return the first four rows.

This is the full data processing pipeline:

19

df <- flights %>%
step 1
filter(distance < 1000) %>%
step 2
select(dep_delay, arr_delay, origin, dest, air_time, distance) %>%
step 3
mutate(

Z_dep_delay = (dep_delay - mean(dep_delay, na.rm = TRUE)) /
sd(dep_delay, na.rm = TRUE),

dep_delay = dep_delay / 60,
arr_delay = arr_delay / 60,
speed = distance / (air_time / 60)

) %>%
step 4
arrange(-speed) %>%
step 5
print(n = 4)

A tibble: 189,671 x 8
dep_delay arr_delay origin dest air_time distance Z_dep_delay speed

<dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 0.15 -0.233 LGA ATL 65 762 -0.108 703.
2 0.25 -0.0167 EWR GSP 55 594 0.0355 648
3 0.0667 0.0333 EWR BNA 70 748 -0.228 641.
4 0.267 -0.367 EWR CVG 62 569 0.0595 551.
i 189,667 more rows

Step 1: The filter function affects the rows of the dataframe. Here, it keeps only flights
with a distance less than 1000 miles. The dplyr package allows us to use the column names
without quotes and without the table name.

Step 2: select affects the columns of the dataframe. Here, it keeps the listed six columns.
The select statement accepts a number of helper functions to select columns based on their
names. For example, starts_with("delay") selects all columns that start with the word
“delay”. The : operator is used to select a range of columns. Using this functionality, we
could have written the select statement also as:

select(ends_with("delay"), origin:distance) %>%

Step 3: This steps modifies columns and adds new ones. The first assignment, creates the
new column Z_dep_delay which is the Z-score of the departure delay. The second and third

20

assignments convert the departure and arrival delays from minutes to hours. The fourth
assignment calculates the average flight speed in miles per hour.

Step 4: The arrange function is used to order the rows by speed. The - sign is used to
indicate descending order.

Step 5: Finally, we print the first 4 rows. This serves only for information and doesn’t change
the tibble which is assigned to the variable df.

2.2 Overview of dplyr functionality

We’ve seen some of the basic functions in the example above. In most cases, these will be
sufficient for your data manipulation needs. It is however useful to have an understanding of
the whole package.

LIGHTBULB Todo

Visit the dplyr website (https://dplyr.tidyverse.org/) and read the Get started section.
This will give you a good overview of the package.

The functionality can be organized into several categories.

2.2.1 Sorting data

The function arrange() is used to sort the data. Here are a few examples:

df <- tibble(a = c(1, 3, 2, 1, 3, 2), b = c(4, 4, 5, 5, 6, 6))
df %>% arrange(a)

A tibble: 6 x 2
a b

<dbl> <dbl>
1 1 4
2 1 5
3 2 5
4 2 6
5 3 4
6 3 6

df %>% arrange(b, a)

21

A tibble: 6 x 2
a b

<dbl> <dbl>
1 1 4
2 3 4
3 1 5
4 2 5
5 2 6
6 3 6

df %>% arrange(desc(b), a)

A tibble: 6 x 2
a b

<dbl> <dbl>
1 2 6
2 3 6
3 1 5
4 2 5
5 1 4
6 3 4

df %>% arrange(-a, b)

A tibble: 6 x 2
a b

<dbl> <dbl>
1 3 4
2 3 6
3 2 5
4 2 6
5 1 4
6 1 5

The examples show that we can sort by one or more columns. The default is ascending order.
To sort in descending order, we can use the desc() function or the - sign. Multiple columns
are sorted in the order they are listed. For example, -a, b first sorts by column a in descending
order, then for rows with the same value in column a, it sorts by column b in ascending order.

22

2.2.2 Selecting columns

The function select() is used to select columns. It can be used to keep only certain columns
or to drop columns. The select() function accepts a number of helper functions to select
columns based on their names. Here are a few examples:

flights %>%
colnames()

[1] "year" "month" "day" "dep_time"
[5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
[9] "arr_delay" "carrier" "flight" "tailnum"
[13] "origin" "dest" "air_time" "distance"
[17] "hour" "minute" "time_hour"

select by part of name:
flights %>%
select(starts_with("arr")) %>%
colnames()

[1] "arr_time" "arr_delay"

flights %>%
select(contains("time")) %>%
colnames()

[1] "dep_time" "sched_dep_time" "arr_time" "sched_arr_time"
[5] "air_time" "time_hour"

flights %>%
select(ends_with("delay")) %>%
colnames()

[1] "dep_delay" "arr_delay"

using regular expressions
flights %>%
select(matches("(time|hour|minute)")) %>%
colnames()

23

[1] "dep_time" "sched_dep_time" "arr_time" "sched_arr_time"
[5] "air_time" "hour" "minute" "time_hour"

select columns using a vector of column names (all_of or any_of)
variables <- c("dep_delay", "arr_delay", "origin", "dest",
"air_time", "distance")

flights %>%
select(all_of(variables)) %>%
colnames()

[1] "dep_delay" "arr_delay" "origin" "dest" "air_time" "distance"

remove columns by name:
flights %>%
select(-c(carrier, flight, tailnum)) %>%
colnames()

[1] "year" "month" "day" "dep_time"
[5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
[9] "arr_delay" "origin" "dest" "air_time"
[13] "distance" "hour" "minute" "time_hour"

flights %>%
select(! matches("(time|hour|minute)")) %>%
colnames()

[1] "year" "month" "day" "dep_delay" "arr_delay" "carrier"
[7] "flight" "tailnum" "origin" "dest" "distance"

2.2.3 Filtering rows

The function filter() is used to filter rows. It keeps only rows that satisfy the condition.
Here are a few examples:

df <- tibble(
row = c(1:7),
a = c(1, 2, 3, 1, 3, 1, NA),
b = c(4, 5, 6, 4, 5, 6, 8)

)

24

filter by column values
df %>%
filter(a == 1)

A tibble: 3 x 3
row a b

<int> <dbl> <dbl>
1 1 1 4
2 4 1 4
3 6 1 6

df %>%
filter(a == 1 & b == 4)

A tibble: 2 x 3
row a b

<int> <dbl> <dbl>
1 1 1 4
2 4 1 4

df %>%
filter(a > 2 | b == 4)

A tibble: 4 x 3
row a b

<int> <dbl> <dbl>
1 1 1 4
2 3 3 6
3 4 1 4
4 5 3 5

df %>%
filter(a %in% c(1, 3))

A tibble: 5 x 3
row a b

<int> <dbl> <dbl>
1 1 1 4
2 3 3 6

25

3 4 1 4
4 5 3 5
5 6 1 6

remove by column values - use the ! operator
df %>%
filter(! a %in% c(1, 3))

A tibble: 2 x 3
row a b

<int> <dbl> <dbl>
1 2 2 5
2 7 NA 8

filter to missing values in column
df %>%
filter(is.na(a))

A tibble: 1 x 3
row a b

<int> <dbl> <dbl>
1 7 NA 8

distinct removes duplicate rows:

df %>%
distinct(a, b, .keep_all = TRUE)

A tibble: 6 x 3
row a b

<int> <dbl> <dbl>
1 1 1 4
2 2 2 5
3 3 3 6
4 5 3 5
5 6 1 6
6 7 NA 8

It’s also possible to select rows using the row number. The function slice() is used for this
purpose.

26

df %>%
slice(1:3)

A tibble: 3 x 3
row a b

<int> <dbl> <dbl>
1 1 1 4
2 2 2 5
3 3 3 6

df %>%
slice(1, 3, 5)

A tibble: 3 x 3
row a b

<int> <dbl> <dbl>
1 1 1 4
2 3 3 6
3 5 3 5

idx <- c(2, 4, 6)
df %>%
slice(idx)

A tibble: 3 x 3
row a b

<int> <dbl> <dbl>
1 2 2 5
2 4 1 4
3 6 1 6

slice_min and slice_max are useful if you want to identify the rows with the smallest or
largest values in a column.

df %>%
slice_min(a)

A tibble: 3 x 3
row a b

27

<int> <dbl> <dbl>
1 1 1 4
2 4 1 4
3 6 1 6

df %>%
slice_max(a, n = 2)

A tibble: 2 x 3
row a b

<int> <dbl> <dbl>
1 3 3 6
2 5 3 5

slice_sample selects a random sample of rows.

df %>%
slice_sample(n = 5) # sample without replacement

A tibble: 5 x 3
row a b

<int> <dbl> <dbl>
1 3 3 6
2 6 1 6
3 2 2 5
4 4 1 4
5 1 1 4

df %>%
slice_sample(n = 5, replace = TRUE) # sample with replacement

A tibble: 5 x 3
row a b

<int> <dbl> <dbl>
1 6 1 6
2 6 1 6
3 5 3 5
4 3 3 6
5 6 1 6

28

2.2.4 Modifying tables

We’ve already seen the mutate function that is used to add new columns or modify existing
ones.

df <- tibble(
a = c(1, 2, 3),
b = c(4, 5, 6)

)
Add one or more new columns
df %>%
mutate(c = a + b)

A tibble: 3 x 3
a b c

<dbl> <dbl> <dbl>
1 1 4 5
2 2 5 7
3 3 6 9

df %>%
mutate(c = a + b, d = a - b, e = c * d)

A tibble: 3 x 5
a b c d e

<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 4 5 -3 -15
2 2 5 7 -3 -21
3 3 6 9 -3 -27

The last example shows that the new columns (e) can be based on previously created columns
(c and d).

Modify existing columns
df %>%
mutate(a = a + 1)

A tibble: 3 x 2
a b

<dbl> <dbl>

29

1 2 4
2 3 5
3 4 6

If a column name already exists, the original column will be replaced. To avoid this, use the
add_column function. It will throw an error if the column name exists. The add_column
function can also be used to add a column in a specific position.

df %>%
add_column(idx = seq_len(nrow(df)))

A tibble: 3 x 3
a b idx

<dbl> <dbl> <int>
1 1 4 1
2 2 5 2
3 3 6 3

df %>%
add_column(idx = seq_len(nrow(df)), .before = "a")

A tibble: 3 x 3
idx a b

<int> <dbl> <dbl>
1 1 1 4
2 2 2 5
3 3 3 6

add_row adds new rows to the table. We can again use .before and .after to specify the
position.

df %>%
add_row(a = 4, b = 7)

A tibble: 4 x 2
a b

<dbl> <dbl>
1 1 4
2 2 5
3 3 6
4 4 7

30

df %>%
add_row(a = 4, b = 7, .after = 1)

A tibble: 4 x 2
a b

<dbl> <dbl>
1 1 4
2 4 7
3 2 5
4 3 6

2.3 Handling missing values

Real life data are often messy and contain missing values. The tidyverse packages dplyr and
tidyr have functions that help dealing with this. In datasets, missing values are not always
identified using NA. Sometimes, they are identified using a placeholder value, e.g. -9999.

2.3.1 Convert placeholders to missing values

Here is an example of a dataset with placeholder values that get converted to missing values.

df <- tibble(
a = c(1, 2, 3, -9999),
b = c(4, -9999, 6, 8)

)
df <- df %>%
mutate_all(na_if, -9999) %>%
print()

A tibble: 4 x 2
a b

<dbl> <dbl>
1 1 4
2 2 NA
3 3 6
4 NA 8

31

2.3.2 Remove or replace missing values

The tidyr package has quite a few functions for handling missing values. We already encoun-
tered the drop_na function to remove rows with missing values.

df <- tibble(
a = c(1, 2, 3, NA),
b = c(4, NA, 6, 8)

)
df %>%
drop_na() # drop rows with missing values

A tibble: 2 x 2
a b

<dbl> <dbl>
1 1 4
2 3 6

df %>%
drop_na(a) # drop rows in which column "a" has missing values

A tibble: 3 x 2
a b

<dbl> <dbl>
1 1 4
2 2 NA
3 3 6

The replace_na function replaces missing values with a specified value.

df %>%
replace_na(list(a = 0, b = 99))

A tibble: 4 x 2
a b

<dbl> <dbl>
1 1 4
2 2 99
3 3 6
4 0 8

32

To replace the missing values with the mean of each column, we can use:

df %>%
replace_na(as.list(colMeans(df, na.rm = TRUE)))

A tibble: 4 x 2
a b

<dbl> <dbl>
1 1 4
2 2 6
3 3 6
4 2 8

2.4 Split - Apply - Combine

The dplyr operations are even more powerful when they can be used with grouping variables.
This approach to data processing is also known as Split - Apply - Combine (Wickham 2011).

• Split: The data is split into groups based on one or more grouping variables.
• Apply: A function is applied to each group independently.
• Combine: The results are combined into a new data structure.

2.4.1 Two examples

Let’s see this approach in action using the flights dataset. We want to calculate the average
departure delay for each airline and sort the resulting table by the average delay.

flights %>%
group_by(carrier) %>%
summarize(avg_dep_delay = mean(dep_delay, na.rm = TRUE)) %>%
arrange(avg_dep_delay)

A tibble: 16 x 2
carrier avg_dep_delay
<chr> <dbl>

1 US 3.78
2 HA 4.90
3 AS 5.80
4 AA 8.59
5 DL 9.26

33

6 MQ 10.6
7 UA 12.1
8 OO 12.6
9 VX 12.9
10 B6 13.0
11 9E 16.7
12 WN 17.7
13 FL 18.7
14 YV 19.0
15 EV 20.0
16 F9 20.2

Step 1: The group_by function is used to specify the grouping variable(s). In this case, we
group by the carrier variable. Note: grouping should to be applied on discrete variables
(categorical, factor, or maybe integer valued columns).

Step 2: This step is applied to the individual groups. The summarize function is used to
calculate the average departure delay for each group. The na.rm = TRUE argument is used to
ignore missing values. Following the summarization, the data is combined into a single tibble.
It contains only the grouping variable(s) and the new summary variable(s).

Step 3: We can now continue with normal processing. The arrange function is used to sort
the resulting table by the average delay.

We can group by multiple variables. For example,

flights %>%
group_by(origin, dest) %>% # group by both origin and dest
summarise(

max.delay = max(arr_delay, na.rm = TRUE),
avg.delay = mean(arr_delay, na.rm = TRUE),
min.delay = min(arr_delay, na.rm = TRUE),
count = n(), # n() gives the group count
.groups = "keep", # keep information about the grouping

)

A tibble: 224 x 6
Groups: origin, dest [224]

origin dest max.delay avg.delay min.delay count
<chr> <chr> <dbl> <dbl> <dbl> <int>

1 EWR ALB 328 14.4 -34 439
2 EWR ANC 39 -2.5 -47 8
3 EWR ATL 796 13.2 -39 5022

34

4 EWR AUS 349 -0.474 -59 968
5 EWR AVL 228 8.80 -26 265
6 EWR BDL 266 7.05 -43 443
7 EWR BNA 364 12.7 -41 2336
8 EWR BOS 422 4.78 -47 5327
9 EWR BQN 208 10.9 -43 297
10 EWR BTV 306 12.2 -41 931
i 214 more rows

LIGHTBULB Useful to know

Instead of first grouping the data and then summarizing, we can use the .by argument
int the summarize function. This is more efficient and can be used for simple summaries.

flights %>%
summarize(
max.delay = max(arr_delay, na.rm = TRUE),
avg.delay = mean(arr_delay, na.rm = TRUE),
min.delay = min(arr_delay, na.rm = TRUE),
count = n(),
.by = c(origin, dest),

)

A tibble: 224 x 6
origin dest max.delay avg.delay min.delay count
<chr> <chr> <dbl> <dbl> <dbl> <int>

1 EWR IAH 374 5.41 -63 3973
2 LGA IAH 435 1.45 -59 2951
3 JFK MIA 614 -1.99 -64 3314
4 JFK BQN 183 6.94 -32 599
5 LGA ATL 895 11.3 -49 10263
6 EWR ORD 1109 9.00 -59 6100
7 EWR FLL 375 7.76 -56 3793
8 LGA IAD 398 13.7 -47 1803
9 JFK MCO 329 5.30 -63 5464

10 LGA ORD 448 1.83 -62 8857
i 214 more rows

2.4.2 Applying functions to groups adding to the original table

The mutate function can be used to add new columns to the original table but calculated for
each group individually. For example,

35

df %>%
group_by(b) %>%
mutate(mean_a = mean(a)) %>%
ungroup()

A tibble: 4 x 3
a b mean_a

<dbl> <dbl> <dbl>
1 1 4 1
2 2 NA 2
3 3 6 3
4 NA 8 NA

Step 1: Group the data using the column b

Step 2: Calculate the mean of column a for each group. The mutate function applies in this
case only to the group and not the full table.

Step 3: To restore the full table, use ungroup. This removes the grouping.

2.4.3 Shortcuts

Some Split - Apply - Combine steps occur so frequently that dplyr provides shortcuts for
them. The function count is one of them. It combines group_by and summarize to count the
number of occurrences of each value in a column. For example,

flights %>%
count(origin)

A tibble: 3 x 2
origin n
<chr> <int>

1 EWR 120835
2 JFK 111279
3 LGA 104662

is equivalent to

flights %>%
group_by(origin) %>%
summarize(n = n())

36

A tibble: 3 x 2
origin n
<chr> <int>

1 EWR 120835
2 JFK 111279
3 LGA 104662

2.5 Concatenate and join data

2.5.1 Concatenating data

Concatenating data is the process of combining two or more datasets into a single one.
The dplyr package provides the bind_rows and bind_cols functions for this purpose. The
bind_rows function is used to combine rows from two datasets. The bind_cols function is
used to combine columns from two datasets.

The dplyr::bind_rows function combines rows from two or more datasets. This is useful if
your dataset is split into parts and you need to combine them.

df1 <- tibble(a = c(1, 2, 3), b = c(4, 5, 6))
df2 <- tibble(a = c(4, 5, 6), b = c(7, 8, 9), c = c(10, 11, 12))

bind rows
bind_rows(df1, df2)

A tibble: 6 x 3
a b c

<dbl> <dbl> <dbl>
1 1 4 NA
2 2 5 NA
3 3 6 NA
4 4 7 10
5 5 8 11
6 6 9 12

Columns are matched by name. If a data frame has missing columns, the missing columns are
filled with NA.

The dplyr::bind_cols function combines columns from two or more datasets. This is useful
if you want to add columns to an existing dataset.

37

df3 <- tibble(c = c(4, 5, 6), d = c(7, 8, 9))
bind_cols(df1, df3)

A tibble: 3 x 4
a b c d

<dbl> <dbl> <dbl> <dbl>
1 1 4 4 7
2 2 5 5 8
3 3 6 6 9

The rows are combined in the order they appear, so be careful that the rows match. If you
have a common identifier in the data frames, using and of the join functions is a safer option.

If columns occur in both dataframes, the column names will be adjusted to be unique. In the
following example, the a columns are renamed to a...1 and a...3.

df4 <- tibble(a = c(4, 5, 6), c = c(7, 8, 9))
bind_cols(df1, df4)

New names:
* `a` -> `a...1`
* `a` -> `a...3`

A tibble: 3 x 4
a...1 b a...3 c
<dbl> <dbl> <dbl> <dbl>

1 1 4 4 7
2 2 5 5 8
3 3 6 6 9

2.5.2 Joins

Joins are used to combine or merge two datasets, based on common identfiiers. The dplyr
package provides a number of functions for this purpose. The main functions are inner_join,
left_join, right_join, and full_join. The inner_join function is the most commonly
used one. It keeps only rows that have matching values in both datasets. The left_join
function keeps all rows from the first dataset and adds columns from the second dataset if
there is a match. The right_join function is the reverse of left_join. The full_join
function keeps all rows from both datasets. We will not cover this here but you can read more
about joins in the R4DS book.

38

https://r4ds.had.co.nz/relational-data.html#mutating-joins

2.6 Additional tidyr functions

The tidyr package has a few more functions that are useful for data manipulation and cleanup.
We list these here for completeness.

• pivot_wider()/spread(): Spreads a pair of key:value columns into a set of tidy columns
• pivot_longer()/gather(): Gather takes multiple columns and collapses into key-value

pairs, duplicating all other columns as needed. You use pivot_longer()/gather()
when you notice that you have columns that are not variables

• separate() turns a single character column into multiple columns
• unite() paste together multiple columns into one (reverse of separate())

INFO Further information

The dplyr cheatsheet is a two-page summary of all the main features of dplyr. For more
details about dplyr, see the main website at https://dplyr.tidyverse.org/.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidyverse) # or library(dplyr)
library(nycflights13) # load flight data
dim(flights)
df <- flights %>%
step 1
filter(distance < 1000) %>%
step 2
select(dep_delay, arr_delay, origin, dest, air_time, distance) %>%
step 3
mutate(

Z_dep_delay = (dep_delay - mean(dep_delay, na.rm = TRUE)) /
sd(dep_delay, na.rm = TRUE),

dep_delay = dep_delay / 60,
arr_delay = arr_delay / 60,
speed = distance / (air_time / 60)

) %>%
step 4
arrange(-speed) %>%

39

https://github.com/rstudio/cheatsheets/blob/main/data-transformation.pdf

step 5
print(n = 4)

df <- tibble(a = c(1, 3, 2, 1, 3, 2), b = c(4, 4, 5, 5, 6, 6))
df %>% arrange(a)
df %>% arrange(b, a)
df %>% arrange(desc(b), a)
df %>% arrange(-a, b)
flights %>%
colnames()

select by part of name:
flights %>%
select(starts_with("arr")) %>%
colnames()

flights %>%
select(contains("time")) %>%
colnames()

flights %>%
select(ends_with("delay")) %>%
colnames()

using regular expressions
flights %>%
select(matches("(time|hour|minute)")) %>%
colnames()

select columns using a vector of column names (all_of or any_of)
variables <- c("dep_delay", "arr_delay", "origin", "dest",
"air_time", "distance")

flights %>%
select(all_of(variables)) %>%
colnames()

remove columns by name:
flights %>%
select(-c(carrier, flight, tailnum)) %>%
colnames()

flights %>%
select(! matches("(time|hour|minute)")) %>%
colnames()

df <- tibble(
row = c(1:7),

40

a = c(1, 2, 3, 1, 3, 1, NA),
b = c(4, 5, 6, 4, 5, 6, 8)

)

filter by column values
df %>%
filter(a == 1)

df %>%
filter(a == 1 & b == 4)

df %>%
filter(a > 2 | b == 4)

df %>%
filter(a %in% c(1, 3))

remove by column values - use the ! operator
df %>%
filter(! a %in% c(1, 3))

filter to missing values in column
df %>%
filter(is.na(a))

df %>%
distinct(a, b, .keep_all = TRUE)

df %>%
slice(1:3)

df %>%
slice(1, 3, 5)

idx <- c(2, 4, 6)
df %>%
slice(idx)

df %>%
slice_min(a)

df %>%
slice_max(a, n = 2)

df %>%
slice_sample(n = 5) # sample without replacement

df %>%
slice_sample(n = 5, replace = TRUE) # sample with replacement

df <- tibble(
a = c(1, 2, 3),
b = c(4, 5, 6)

)

41

Add one or more new columns
df %>%
mutate(c = a + b)

df %>%
mutate(c = a + b, d = a - b, e = c * d)

Modify existing columns
df %>%
mutate(a = a + 1)

df %>%
add_column(idx = seq_len(nrow(df)))

df %>%
add_column(idx = seq_len(nrow(df)), .before = "a")

df %>%
add_row(a = 4, b = 7)

df %>%
add_row(a = 4, b = 7, .after = 1)

df <- tibble(
a = c(1, 2, 3, -9999),
b = c(4, -9999, 6, 8)

)
df <- df %>%
mutate_all(na_if, -9999) %>%
print()

df <- tibble(
a = c(1, 2, 3, NA),
b = c(4, NA, 6, 8)

)
df %>%
drop_na() # drop rows with missing values

df %>%
drop_na(a) # drop rows in which column "a" has missing values

df %>%
replace_na(list(a = 0, b = 99))

df %>%
replace_na(as.list(colMeans(df, na.rm = TRUE)))

flights %>%
group_by(carrier) %>%
summarize(avg_dep_delay = mean(dep_delay, na.rm = TRUE)) %>%
arrange(avg_dep_delay)

flights %>%
group_by(origin, dest) %>% # group by both origin and dest
summarise(

42

max.delay = max(arr_delay, na.rm = TRUE),
avg.delay = mean(arr_delay, na.rm = TRUE),
min.delay = min(arr_delay, na.rm = TRUE),
count = n(), # n() gives the group count
.groups = "keep", # keep information about the grouping

)
flights %>%
summarize(

max.delay = max(arr_delay, na.rm = TRUE),
avg.delay = mean(arr_delay, na.rm = TRUE),
min.delay = min(arr_delay, na.rm = TRUE),
count = n(),
.by = c(origin, dest),

)
df %>%
group_by(b) %>%
mutate(mean_a = mean(a)) %>%
ungroup()

flights %>%
count(origin)

flights %>%
group_by(origin) %>%
summarize(n = n())

df1 <- tibble(a = c(1, 2, 3), b = c(4, 5, 6))
df2 <- tibble(a = c(4, 5, 6), b = c(7, 8, 9), c = c(10, 11, 12))

bind rows
bind_rows(df1, df2)
df3 <- tibble(c = c(4, 5, 6), d = c(7, 8, 9))
bind_cols(df1, df3)
df4 <- tibble(a = c(4, 5, 6), c = c(7, 8, 9))
bind_cols(df1, df4)

43

3 Data visualization

The tidyverse package ggplot2 is a great way to create complex data visualization. It is based
on The Grammar of Graphics by Wilkinson (L. Wilkinson 2005). The basic idea is that you
can describe a graph in several layers:

• Data: the data that contain the variables to be visualized
• Aesthetics: mapping of data variables to visual properties (aesthetics) such as position,

color, size, shape, etc.
• Geometries: the geometric objects that represent the data points such as points, lines,

bars, etc.
• Facets: splitting the data into subsets and creating a separate plot for each subset
• Statistics: statistical transformations of the data such as smoothing, binning, etc.
• Coordinates: the coordinate system used for the plot such as Cartesian, polar, etc.
• Theme: control the visual appearance of the plot such as background color, grid lines,

font size, etc.

While the package is conceptually founded on this grammar, you will see that there is no
one-to-one correspondence. However, the ideas shine through when building plots.

3.1 ggplot2 — the basics

ggplot2 is loaded either with library(ggplot2) or library(tidyverse).

library(tidyverse)
library(patchwork)
library(GGally)
library(hexbin)

We also load the package patchwork which allows us to combine multiple graphs into a single
figure.

Here is an example of a ggplot2 graph:

ggplot(data = mtcars, mapping = aes(x = wt, y = mpg)) + 1

geom_point(color = "darkgreen") + 2

geom_smooth(formula = y ~ x, method = "lm") 3

44

1 The ggplot command creates a new plot. It combines the data and aesthetics layers. The
first argument is the data frame, and the second argument is the mapping of data onto
aesthetics. It maps the variables from the dataframe to the visual properties of the plot.
In this case, we are mapping the variable wt to the 𝑥-axis and the variable mpg to the
𝑦-axis.

2 The geom_point command adds a scatter plot using the + operator. This corresponds to
the geometries layer. In addition, we specify the color of the points. This overrides
the default color aesthetic of the points from black to darkgreen. In the same way we
changed the aesthetics of the points, we can change other aesthetics such as size, shape,
and transparency, We could also change the mapping easily.

3 The geom_smooth command adds a fit curve. This is an example of the statistics layer.
The mapped x and y aesthetics (wt and mpg) are used in a linear regression and the
resulting fit line added to the graph. The formula argument specifies the formula for
the curve. The default is the linear regression y~x. The method argument specifies the
method for fitting the curve. In this case, we are using the linear model. The default is
to fit a loess curve or a spline fit dependent on the dataset size.

10

20

30

2 3 4 5
wt

m
pg

Figure 3.1: Example of a ggplot2 graph

Figure 3.1 gives the resulting plot. There are many ways in which we can extend the plot. For
example, we can color the points by another data property. In the following example, we color
by the number of cylinders (cyl).

ggplot(data = mtcars, mapping = aes(x = wt, y = mpg,
color = factor(cyl), shape = factor(cyl))) + 1

geom_point() + 2

45

geom_smooth(formula = y ~ x, method = "lm") 3

1 The new aesthetic mapping is added as an argument the aes function. The variable cyl,
the number of cylinders, is mapped to the color aesthetic.1

2 Without any change to this command, the scatterplot now uses different colors based on
the cyl value of the datapoint.

3 The color aesthetic also influences the linear regression fit. The data are grouped by cyl
and individual regression lines are determined and drawn for each value. The same colors
are used as for the data points.

10

15

20

25

30

35

2 3 4 5
wt

m
pg

factor(cyl)

4

6

8

Figure 3.2: Example of a ggplot2 graph with color representing a property

From just looking at the graph in Figure 3.2 alone, it is not clear what the different colors
represent. Best practice is to add a legend; ggplot2 does this automatically for you. With
the new aesthetic, a legend is added to the plot that explains what the colors represent. This
is done automatically to ensure that the resulting visualization follows best practices.

The graph in Figure 3.2 uses the column names wt and mpg as labels for the axis and
factor(cyl) for the color information in the legend. We can provide better labels these
using the labs command getting the final plot in Figure 3.3.

ggplot(data = mtcars, mapping = aes(x = wt, y = mpg,
color = factor(cyl), shape = factor(cyl))) +

geom_point() +
geom_smooth(formula = y ~ x, method = "lm") +

1Note: we convert the cyl variable to a factor. It would be better to do this at the data preprocessing stage.

46

labs(title = "Plot of MPG vs Weight", 1

x = "Weight", 2

y = "MPG",
color = "Number of Cylinders",
shape = "Number of Cylinders") 3

1 You can add a title to graph using the labs command.
2 The values of the x and y arguments are used to label the axis.
3 The color value is used in the legend.

10

15

20

25

30

35

2 3 4 5
Weight

M
P

G

Number of Cylinders

4

6

8

Plot of MPG vs Weight

Figure 3.3: Adding labels to the plot

This short example should demonstrate the power and flexibility of ggplot2. It is useful to
get an understanding of the full potential of ggplot2.

LIGHTBULB Todo

• Go to the ggplot2 website at https://ggplot2.tidyverse.org/ and look at the Refer-
ence section.

• Visit the R graph gallery at https://r-graph-gallery.com/ggplot2-package.html to
get an overview of the different types of plots that can be created with ggplot2.

In the following we will look at more examples of graphs that are useful for exploratory data
analysis.

47

3.2 Visualizing a single variable

In exploratory data analysis, we are often interested in the distribution of single variables in
a dataset. Commonly used graphs are boxplots, histograms, and density plots.

library(patchwork)
g1 <- ggplot(data = mtcars, mapping = aes(y = mpg)) +
geom_boxplot() +
labs(y = "MPG", title = "Boxplot")

g2 <- ggplot(data = mtcars, mapping = aes(x = mpg)) +
geom_histogram(bins = 20) +
labs(x = "MPG", title = "Histogram")

g3 <- ggplot(data = mtcars, mapping = aes(x = mpg)) +
geom_density() +
labs(x = "MPG", title = "Density plot")

g1 + g2 + g3 + plot_layout(widths = c(1, 2, 2))

10

15

20

25

30

35

−0.4 −0.2 0.0 0.2 0.4

M
P

G

Boxplot

0

1

2

3

4

5

10 15 20 25 30 35
MPG

co
un

t

Histogram

0.00

0.02

0.04

0.06

10 15 20 25 30 35
MPG

de
ns

ity

Density plot

Figure 3.4: Visualizing a single variable with a boxplot, histogram, and density plot

Figure 3.4 shows the three plots. The first plot is a boxplot (geom_boxplot). It shows the
median, the first and third quartile, and the minimum and maximum values. The variable of
interest is mapped onto the y axis. This is different from the histogram and densityplot where
the variable is mapped onto the x axis.2

The second plot is a histogram (geom_histogram). It shows the distribution of the data. By
default, the graph uses 30 bins, which may be fine for your data. However, it is often useful
to experiment with different bin sizes (binwidth) or counts (bins) and see how the graph
changes. It can be helpful to also change the position of the bins using center or boundary.
Figure 3.5 shows how these arguments change the creation of bins.

2You could map the variable also onto the x aesthetic. This would give you a horizontal boxplot.

48

Figure 3.5: Definition of bin, binwidth and boundary in geom_histogram

The third plot in Figure 3.4 is a density plot. It is similar to a histogram but uses a smooth
curve instead of bars. Similar to histograms, the shape of density plots can be controlled
using arguments. The bw argument controls the smoothness of the density plot. By default,
a bandwidth is chosen automatically from the data using one of several approaches. nrd0
(Silverman 1986) or nrd (Scott 1992) are good choices. The adjust argument (default 1) can
be used to adjust this automatically determined bandwidth.

Figure 3.6 shows how the histogram and density plot from Figure 3.4 changes when varying
binwidth, center, boundary, and bw.

library(patchwork)
g <- ggplot(data = mtcars, mapping = aes(x = mpg)) +
labs(x = "MPG")

g1 <- g + geom_histogram(binwidth = 3) +
labs(title = "binwidth = 3")

g2 <- g +
geom_histogram(binwidth = 3, center = 10) +
labs(title = "binwidth = 3, center = 10")

g3 <- g +
geom_histogram(binwidth = 3, boundary = 10) +
labs(title = "binwidth = 3, boundary = 10")

g <- ggplot(data = mtcars, mapping = aes(x = mpg)) +
labs(x = "MPG")

g4 <- g + geom_density() + labs(title = "bw = \"nrd0\"")

49

g5 <- g + geom_density(bw = 1.5) + labs(title = "bw = 1.5")
g6 <- g + geom_density(bw = 0.5) + labs(title = "bw = 0.5")
(g1 + g2 + g3) / (g4 + g5 + g6)

0

2

4

6

8

10 15 20 25 30 35
MPG

co
un

t

binwidth = 3

0

2

4

6

8

10 20 30
MPG

co
un

t

binwidth = 3, center = 10

0

2

4

6

8

10 15 20 25 30 35
MPG

co
un

t

binwidth = 3, boundary = 10

0.00

0.02

0.04

0.06

10 15 20 25 30 35
MPG

de
ns

ity

bw = "nrd0"

0.00

0.02

0.04

0.06

10 15 20 25 30 35
MPG

de
ns

ity

bw = 1.5

0.00

0.05

0.10

10 15 20 25 30 35
MPG
de

ns
ity

bw = 0.5

Figure 3.6: Effect of changing binwidth, center, boundary, and bw on histogram and density
plots

LIGHTBULB Useful to know

In Figure 3.4, we combined multiple plots into a single figure using the patchwork pack-
age. We create three plots g1, g2, and g3 and then combine them using the + operator.
The plot_layout function is used to control the relative sizes here. You will find more
examples of this throughout the book.
In Figure 3.6, six plots were combined using

(g1 + g2 + g3) / (g4 + g5 + g6)

Sometimes you will be interested in separating the data by a factor. For example, you may want
to compare the distribution of the mpg variable for different numbers of cylinders. Figure 3.7
shows the same three plots as before but now grouped by the number of cylinders.

50

mtcars <- datasets::mtcars %>% mutate(cyl = as.factor(cyl))
g1 <- ggplot(data = mtcars, mapping = aes(y = mpg, x = cyl,

color = cyl)) +
geom_boxplot() +
labs(x = "Cylinders", y = "MPG", title = "Boxplot") +
theme(legend.position = "none")

g2 <- ggplot(data = mtcars, mapping = aes(x = mpg, fill = cyl)) +
geom_histogram(bins = 20) +
labs(x = "MPG", title = "Stacked histogram") +
theme(legend.position = "none")

g3 <- ggplot(data = mtcars, mapping = aes(x = mpg, fill = cyl)) +
geom_histogram(bins = 20, alpha = 0.5, position = "identity") +
labs(x = "MPG", title = "Histogram") +
theme(legend.position = "none")

g4 <- ggplot(data = mtcars, mapping = aes(x = mpg, fill = cyl)) +
geom_density(alpha = 0.5) +
labs(x = "MPG", title = "Density plot") +
theme(legend.position = "none")

g1 + g2 + g3 + g4 + plot_layout(widths = c(1, 1, 1, 1))

10

15

20

25

30

35

4 6 8
Cylinders

M
P

G

Boxplot

0

1

2

3

4

5

10 15 20 25 30 35
MPG

co
un

t

Stacked histogram

0

1

2

3

4

5

10 15 20 25 30 35
MPG

co
un

t

Histogram

0.00

0.05

0.10

0.15

0.20

0.25

10 15 20 25 30 35
MPG

de
ns

ity

Density plot

Figure 3.7: Visualizing a single variable with a boxplot, histogram, and density plot grouped
by a factor

Boxplot: We map the cyl factor both to the y and the color aesthetic. This creates a
separate boxplot for each level of the factor.

Stacked histogram: For the histogram, we map the factor to the fill aesthetic. This
creates a stacked histogram.

Histogram: To create a histogram for each level of the factor, we need to set the position

51

argument to "identity". This creates a separate histogram for each level of the factor. To
avoid the histograms being plotted on top of each other, we set the alpha argument to 0.5.
This makes the histograms transparent.

Densityplot: The densityplot is similar to the histogram. We map the factor to the fill
aesthetic and set the alpha argument to 0.5 to create overlayed densityplots for each level
of the factor. The position argument has the same effect as for geom_histogram. The
difference is that default are overlayed densityplots. Using position="stack" creates stacked
densityplots.

By changing the x and y mapping, the boxplot can be arranged horizontally. See Figure 3.8.

g <- ggplot(data = mtcars, mapping = aes(x = mpg, y = cyl,
color = cyl)) +

geom_boxplot() +
labs(x = "MPG", y = "Cylinders", title = "Boxplot") +
theme(legend.position = "none")

g

4

6

8

10 15 20 25 30 35
MPG

C
yl

in
de

rs

Boxplot

Figure 3.8: Horizontal boxplot grouped by a factor

3.3 Visualizing two variables

The introductory example showed the relationship between two variables using a scatterplot.
Scatterplots are a good choice if the number of data points isn’t too large. If the number
of points gets larger, data points will be shown on top of each other. In this case, using
transparent points, will reveal the density of the data. The argument alpha changes the
transparency. alpha=1 is the default no transparency. Reducing it increases the transparency;
0 makes the point invisible. A good starting point is 0.5. Always try a variety of alpha values
to see which one works best for your data. See Figure 3.9 that demonstrates the effect of
adding transparency.

52

auto <- ISLR2::Auto %>%
mutate(cylinders = as.factor(cylinders))

g1_1 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_point() +
labs(title = "Scatterplot", x = "Weight", y = "MPG")

g1_2 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_point(alpha = 0.5) +
labs(title = "Scatterplot with transparency",

x = "Weight", y = "MPG")

g1_1 + g1_2

10

20

30

40

2000 3000 4000 5000
Weight

M
P

G

Scatterplot

10

20

30

40

2000 3000 4000 5000
Weight

M
P

G

Scatterplot with transparency

Figure 3.9: Using transparency if overplotting occurs

For very large datasets, it is better to use a heatmap or a two-dimensional density plot.
Figure 3.10 shows the two versions of the heatmap for the ISLR2::Auto dataset.

g1 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_bin_2d(bins = 15) +
labs(x = "Weight", y = "MPG", title = "Rectangular heatmap")

g2 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_hex(bins = 15) +
scale_fill_viridis_c(direction = -1) +

53

labs(x = "Weight", y = "MPG", title = "Hexagonal heatmap")

g1 + g2

10

20

30

40

2000 3000 4000 5000
Weight

M
P

G

count

4

8

12

16

Rectangular heatmap

10

20

30

40

2000 3000 4000 5000
Weight

M
P

G

count

5

10

Hexagonal heatmap

Figure 3.10: Visualizing two variables with a heatmap

The functions geom_bin_2d and geom_hex create heatmap representations of the distribution.
The first uses rectangular, the second hexagonal patches. Use the bins argument to change
the number of bins in a direction.Similar to histograms, try different values for bins for your
data. There are other arguments to control binning. In the second example, we use a different
colormap. Check the documentation for details.

By default, the color represents the count of data points in a bin. If you want to use a value,
e.g. the average of a variable, you can use the stat_summary_2d function. See Figure 3.11 for
an example.

ggplot(data = auto, mapping = aes(x = weight, y = displacement)) +
stat_summary_hex(aes(z = mpg), bins = 10, fun = mean) +
scale_fill_viridis_c(direction = -1) +
geom_point() +
labs(title = "Color heatmap by average of `mpg`",

x = "Weight", y = "Displacement")

54

100

200

300

400

2000 3000 4000 5000
Weight

D
is

pl
ac

em
en

t
value

15

20

25

30

35

Color heatmap by average of ‘mpg‘

Figure 3.11: Color heatmap by average of mpg

Examples for two dimensional density plots are shown in Figure 3.12. The geom_density_2d
function adds the density plot layer.

g1 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_density_2d() +
geom_point(size = 0.5, color = "darkblue") +
labs(x = "Weight", y = "MPG", title = "Two-dimensional density")

g2 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg,
color = cylinders, shape = cylinders)) +

geom_point(size = 0.5) +
geom_density_2d() +
scale_colour_brewer(palette = "Set1") +
labs(title = "Two-dimensional density by categorical variable",

x = "Weight", y = "MPG", color = "Number of Cylinders",
shape = "Number of Cylinders")

g1 + g2

55

10

20

30

40

2000 3000 4000 5000
Weight

M
P

G
Two−dimensional density

10

20

30

40

2000 3000 4000 5000
Weight

M
P

G

Number of Cylinders

3

4

5

6

8

Two−dimensional density by categorical variable

Figure 3.12: Visualizing two variables with a density plot

The left graph shows the density using contour lines. The right graph overlays individual
density contours for each of the subsets formed by the categorical variable cylinders. The
scale_colour_brewer function selects the colors. The palette argument specifies the color
palette. Set1 is a good choice for categorical variables.

LIGHTBULB Useful to know

The “Brewer” color scales are based on the work of Cynthia Brewer who designed color
palettes for different use cases. While it was initially developed for coloring maps, the var-
ious palettes have become popular options for coloring graphs. You can go to https://col-
orbrewer2.org/ to explore this more.

We can add filled contour lines using the function geom_density_2d_filled. See Fig-
ure 3.13.

g1 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_density_2d_filled(alpha = 0.5) +
geom_point(size = 0.5) +
labs(title = "Two-dimensional density (filled)",

x = "Weight", y = "MPG") +
theme(legend.position = "none")

g2 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_density_2d_filled() + #contour_var = "ndensity", bins = 5) +
geom_point(size = 0.5) +
scale_fill_brewer() +
labs(title = "Alternative color scheme",

x = "Weight", y = "MPG") +
theme(legend.position = "none")

56

g1 + g2

10

20

30

40

2000 3000 4000 5000
Weight

M
P

G

Two−dimensional density (filled)

10

20

30

40

2000 3000 4000 5000
Weight

M
P

G

Alternative color scheme

Figure 3.13: Filled two-dimensional density plot

3.4 Visualizing multiple variables

One option to visualize multiple variables in a graph is a pairplot. Figure 3.14 uses the ggpairs
function from the GGally package.

pair_auto <- ISLR2::Auto %>%
mutate(

cylinders = as.factor(cylinders),
origin = as.factor(origin),

) %>%
select(-name)

ggpairs(pair_auto,
lower = list(combo = wrap("facethist", binwidth = 0.5)))

57

Corr:
−0.805***

Corr:
−0.778***

Corr:

0.897***

Corr:
−0.832***

Corr:

0.933***

Corr:

0.865***

Corr:
0.423***

Corr:

−0.544***

Corr:

−0.689***

Corr:

−0.417***

Corr:
0.581***

Corr:

−0.370***

Corr:

−0.416***

Corr:

−0.309***

Corr:
0.290***

mpg cylinders displacement horsepower weight acceleration year origin

m
pg

cylinders
displacem

ent
horsepow

er
w

eight
acceleration

year
origin

10 20 30 40 3 4 5 6 8 100 200 300 400 50 100 150 200 2000300040005000 10 15 20 25 72 76 80 1 2 3

0.00

0.01

0.02

0.03

0.04

05
101520

05
101520

05
101520

05
101520

05
101520

100

200

300

400

50

100

150

200

2000

3000

4000

5000

10

15

20

25

70.0

72.5

75.0

77.5

80.0

82.5

05
101520

05
101520

05
101520

Figure 3.14: Pair plot

A pairplot shows visualizations of pairs of variables in a compact presentation. By default,
ggpairs uses densityplots and bar charts along the diagonal to show the distribution of con-
tinuous and categorical variables. The upper and lower triangle visualizations depend on the
type of the two variables. If both variables are are continuous, the upper triangle shows their
correlation as a value and the lower triangle a scatterplot. If one variable is continuous and
the other is categorical, the upper triangle uses boxplots and the lower triangle a bar chart.
If both variables are categorical, the lower triangle shows a bar chart and the upper triangle

58

a type of two dimensional bar chart.

Figure 3.15 shows an alternative visualization of multiple variables. The ggparcoord function
from the GGally package creates a parallel coordinate plot. It shows the values of each data
point as a line.

g1 <- pair_auto %>%
ggparcoord(columns = 1:7, groupColumn = 8)

g2 <- pair_auto %>%
ggparcoord(columns = c(2:5, 7, 6, 1), groupColumn = 8, alpha = 0.5,

splineFactor = 10)
g1 + g2

−2

0

2

mpg cylinders displacementhorsepower weight acceleration year
variable

va
lu

e

origin

1

2

3

−2

0

2

cylinders displacementhorsepower weight year acceleration mpg
variable

va
lu

e
origin

1

2

3

Figure 3.15: Parallel coordinate plot. Lines connect the values of each data point and are
colored by the origin of the car.

Parallel coordinate plots can be hard to read and it is worth exerimenting with different or-
derings of the variables and other settings. Here, we used alpha to make the lines transparent
which helps for larger datasets. The splineFactor argument controls the smoothness of the
lines. Without smoothing, the variable values would be connected by straight lines. This sep-
arates the lines and makes it easier to see the distribution of the data. It also adds information
on how the coordinates to the left (mpg) and the right (displacement) are connected. The
groupColumn argument is used to color the lines by the origin of the car.

Parallel coordinate plots also benefit greatly from interactivity. You can use the plotly
package to create interactive parallel coordinate plots (see https://plotly.com/r/parallel-
coordinates-plot/ for examples).

59

https://plotly.com/r/parallel-coordinates-plot/
https://plotly.com/r/parallel-coordinates-plot/

3.5 Saving plots to file

You can save plots to file using the ggsave function. The following example saves the scatter-
plot from Figure 3.13 to a png file.

ggsave(filename = "example.png", plot = g1 + g2,
width = 12.6, height = 6.3, units = "in", dpi = 300)

Here is the saved figure:

knitr::include_graphics("example.png")

Figure 3.16: Graphs stored in example.png

3.6 autoplot and autolayer functions

Some R packages provide autoplot functions that create ggplot2 graphs. If available, these
functions are useful for quickly visualizing special data or the result of calculations. The
functions return a ggplot2 graph that can be further customized using the methods shown in
this chapter. Packages that implement the autoplot function often also provide an autolayer
function. This function adds a layer with a specialized visualization to an existing ggplot2
graph.

In this book, we use autoplot functions to visualize the results of model tuning (see Chap-
ter 14) and ROC curves (see Section 10.3).

60

For example, the forecast package provides autoplot and autolayer functions for time
series objects. Figure 3.17 shows how the autoplot function selects an appropriate axis scale
for time series data.

library(forecast)

Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo

autoplot(AirPassengers) +
autolayer(seasadj(decompose(AirPassengers, "multiplicative"))) +
theme(legend.position = "none")

200

400

600

1950 1952 1954 1956 1958 1960
Time

A
irP

as
se

ng
er

s

Figure 3.17: Example of an autoplot: air passenger counts (black) with seasonal adjustment
(red)

INFO Further information

• The ggplot2 cheatsheet is a two-page summary of all the main features of ggplot2.
• For more details about ggplot2, see the main ggplot2 website at https://gg-

plot2.tidyverse.org/.
• The R graph gallery provides an overview of the different types of plots that can

be created with ggplot2.
• ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham et al. is the

definitive guide to ggplot2.
• The R Graphics Cookbook by Winston Chang is a great resource for learning how

to create different types of plots in R.
• https://ggobi.github.io/ggally/ is the website of the GGally package. It provides a

number of useful functions for creating more complex plots with ggplot2.

61

https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf
https://r-graph-gallery.com/ggplot2-package.html
https://ggplot2-book.org/
https://r-graphics.org/
https://ggobi.github.io/ggally/

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidyverse)
library(patchwork)
library(GGally)
library(hexbin)
ggplot(data = mtcars, mapping = aes(x = wt, y = mpg)) + 1

geom_point(color = "darkgreen") + 2

geom_smooth(formula = y ~ x, method = "lm") 3

ggplot(data = mtcars, mapping = aes(x = wt, y = mpg,
color = factor(cyl), shape = factor(cyl))) + 1

geom_point() + 2

geom_smooth(formula = y ~ x, method = "lm") 3

ggplot(data = mtcars, mapping = aes(x = wt, y = mpg,
color = factor(cyl), shape = factor(cyl))) +

geom_point() +
geom_smooth(formula = y ~ x, method = "lm") +
labs(title = "Plot of MPG vs Weight", 1

x = "Weight", 2

y = "MPG",
color = "Number of Cylinders",
shape = "Number of Cylinders") 3

library(patchwork)
g1 <- ggplot(data = mtcars, mapping = aes(y = mpg)) +
geom_boxplot() +
labs(y = "MPG", title = "Boxplot")

g2 <- ggplot(data = mtcars, mapping = aes(x = mpg)) +
geom_histogram(bins = 20) +
labs(x = "MPG", title = "Histogram")

g3 <- ggplot(data = mtcars, mapping = aes(x = mpg)) +
geom_density() +
labs(x = "MPG", title = "Density plot")

g1 + g2 + g3 + plot_layout(widths = c(1, 2, 2))
knitr::include_graphics("images/bin_binwidth.png")
library(patchwork)
g <- ggplot(data = mtcars, mapping = aes(x = mpg)) +
labs(x = "MPG")

62

g1 <- g + geom_histogram(binwidth = 3) +
labs(title = "binwidth = 3")

g2 <- g +
geom_histogram(binwidth = 3, center = 10) +
labs(title = "binwidth = 3, center = 10")

g3 <- g +
geom_histogram(binwidth = 3, boundary = 10) +
labs(title = "binwidth = 3, boundary = 10")

g <- ggplot(data = mtcars, mapping = aes(x = mpg)) +
labs(x = "MPG")

g4 <- g + geom_density() + labs(title = "bw = \"nrd0\"")
g5 <- g + geom_density(bw = 1.5) + labs(title = "bw = 1.5")
g6 <- g + geom_density(bw = 0.5) + labs(title = "bw = 0.5")
(g1 + g2 + g3) / (g4 + g5 + g6)
(g1 + g2 + g3) / (g4 + g5 + g6)
mtcars <- datasets::mtcars %>% mutate(cyl = as.factor(cyl))
g1 <- ggplot(data = mtcars, mapping = aes(y = mpg, x = cyl,

color = cyl)) +
geom_boxplot() +
labs(x = "Cylinders", y = "MPG", title = "Boxplot") +
theme(legend.position = "none")

g2 <- ggplot(data = mtcars, mapping = aes(x = mpg, fill = cyl)) +
geom_histogram(bins = 20) +
labs(x = "MPG", title = "Stacked histogram") +
theme(legend.position = "none")

g3 <- ggplot(data = mtcars, mapping = aes(x = mpg, fill = cyl)) +
geom_histogram(bins = 20, alpha = 0.5, position = "identity") +
labs(x = "MPG", title = "Histogram") +
theme(legend.position = "none")

g4 <- ggplot(data = mtcars, mapping = aes(x = mpg, fill = cyl)) +
geom_density(alpha = 0.5) +
labs(x = "MPG", title = "Density plot") +
theme(legend.position = "none")

g1 + g2 + g3 + g4 + plot_layout(widths = c(1, 1, 1, 1))
g <- ggplot(data = mtcars, mapping = aes(x = mpg, y = cyl,

color = cyl)) +
geom_boxplot() +
labs(x = "MPG", y = "Cylinders", title = "Boxplot") +
theme(legend.position = "none")

g

63

auto <- ISLR2::Auto %>%
mutate(cylinders = as.factor(cylinders))

g1_1 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_point() +
labs(title = "Scatterplot", x = "Weight", y = "MPG")

g1_2 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_point(alpha = 0.5) +
labs(title = "Scatterplot with transparency",

x = "Weight", y = "MPG")

g1_1 + g1_2
g1 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_bin_2d(bins = 15) +
labs(x = "Weight", y = "MPG", title = "Rectangular heatmap")

g2 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_hex(bins = 15) +
scale_fill_viridis_c(direction = -1) +
labs(x = "Weight", y = "MPG", title = "Hexagonal heatmap")

g1 + g2
ggplot(data = auto, mapping = aes(x = weight, y = displacement)) +
stat_summary_hex(aes(z = mpg), bins = 10, fun = mean) +
scale_fill_viridis_c(direction = -1) +
geom_point() +
labs(title = "Color heatmap by average of `mpg`",

x = "Weight", y = "Displacement")
g1 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_density_2d() +
geom_point(size = 0.5, color = "darkblue") +
labs(x = "Weight", y = "MPG", title = "Two-dimensional density")

g2 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg,
color = cylinders, shape = cylinders)) +

geom_point(size = 0.5) +
geom_density_2d() +
scale_colour_brewer(palette = "Set1") +
labs(title = "Two-dimensional density by categorical variable",

x = "Weight", y = "MPG", color = "Number of Cylinders",
shape = "Number of Cylinders")

g1 + g2
g1 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_density_2d_filled(alpha = 0.5) +

64

geom_point(size = 0.5) +
labs(title = "Two-dimensional density (filled)",

x = "Weight", y = "MPG") +
theme(legend.position = "none")

g2 <- ggplot(data = auto, mapping = aes(x = weight, y = mpg)) +
geom_density_2d_filled() + #contour_var = "ndensity", bins = 5) +
geom_point(size = 0.5) +
scale_fill_brewer() +
labs(title = "Alternative color scheme",

x = "Weight", y = "MPG") +
theme(legend.position = "none")

g1 + g2
pair_auto <- ISLR2::Auto %>%
mutate(

cylinders = as.factor(cylinders),
origin = as.factor(origin),

) %>%
select(-name)

ggpairs(pair_auto,
lower = list(combo = wrap("facethist", binwidth = 0.5)))

g1 <- pair_auto %>%
ggparcoord(columns = 1:7, groupColumn = 8)

g2 <- pair_auto %>%
ggparcoord(columns = c(2:5, 7, 6, 1), groupColumn = 8, alpha = 0.5,

splineFactor = 10)
g1 + g2
ggsave(filename = "example.png", plot = g1 + g2,
width = 12.6, height = 6.3, units = "in", dpi = 300)

knitr::include_graphics("example.png")
library(forecast)
autoplot(AirPassengers) +
autolayer(seasadj(decompose(AirPassengers, "multiplicative"))) +
theme(legend.position = "none")

65

4 Interactive visualization

In Chapter 3, we used ggplot to create data visualizations. These are great for reports and
when you already know what you want to demonstrate with your data. At an early stage of
exploratory data analysis, it can however be useful to explore data interactively. A popular
open-source graphing library is plotly. It can be used with Python, R, and Javascript and
allows the creation of interactive dashboards. Here, we will only briefly discuss how to create
interactive visualizations in R using the plotly package and embed them into R Markdown
docuemnts.

4.1 plotly in R.

The plotly package is available on CRAN and can be installed as follows:

install.packages("plotly", repos = "http://cran.rstudio.com")

and loaded using:

library(plotly)

Interactivity depends of course on the output format; interactivity works well in HTML pages
or in RStudio, but is not supported when the Rmarkdown is converted to PDF.

4.2 Two dimensional scatter plot using plot_ly

Here is the code to create a simple two dimensional scatterplot:

auto <- ISLR2::Auto %>%
mutate(cylinders = as.factor(cylinders))

plot_ly(1

data = auto,
x = ~horsepower, 2

66

y = ~mpg,
text = ~name,
type = "scatter", 3

mode = "markers",
hoverinfo = "text+x+y" 4

)

1 The plot_ly command takes a variety of arguments to specify the data, how they are
mapped onto aesthetics (x, y, text) and what type of graph should be created. We map
horsepower to x, mpg to y, and the name to ‘text.

2 You can also specify transformatios of data here, e.g. y = ~log(mpg)
3 We specify a scatterplot where the data are represented using markers.
4 The hoverinfo argument defines that we want to display the x, y, and text values, so

horsepower, mpg, and name when the mouse is hovered over a point in the scatterplot.

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/Rtmp6POWQ9/file33673534faa5/widget3367293381ed.html screenshot completed

67

50 100 150

10

15

20

25

30

35

40

45

horsepower

m
pg

Figure 4.1: Interactive scatterplot of mpg versus horsepower (plot_ly version)

The resulting plot (Figure 4.1) can be zoomed and dragged. Hovering over a point displays
information about the car.

68

4.3 Add interactivity to ggplot figure using ggplotly

If you already have a ggplot2 visualization, you can conveniently convert it into an interactive
plotly graph using the ggplotly() function. For example, the following code creates a scat-
terplot of mpg versus horsepower from the auto data set and converts it into an interactive
plot:

g <- ggplot(auto, aes(x = horsepower, y = mpg, label = name)) +
geom_point()

ggplotly(g)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/RtmpxebGSn/file63d44ecd0555/widget63d4761937dd.html screenshot completed

69

50 100 150

10

20

30

40

horsepower

m
pg

Figure 4.2: Interactive scatterplot of mpg versus horsepower (ggplotly version)

This is all that needs to be done.

4.4 Three dimensional plots using plot_ly

You can use plot_ly also to create three dimensional plots as shown in the following exam-
ple.

70

plot_ly(
x = auto$mpg,
y = auto$weight,
z = auto$horsepower, 1

color = auto$cylinders,
type = "scatter3d", 2

mode = "markers",
marker = list(size = 4) 3

)

1 3D scatterplots require mapping a feature to z
2 The marker argument allows configuring the symbol, e.g. . Here, we control the size of the

markers.

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/RtmpxebGSn/file63d45d6c07b0/widget63d45f6ce3ba.html screenshot completed

71

Figure 4.3: Interactive 3D scatterplot of mpg versus horsepower and weight

72

INFO Further information

Plotly is more than just scatterplots. There are a much wider variety of interactive plots
possible. Check out the documentation at https://plotly.com/r/ to learn more about
plotly’s interface to R.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

install.packages("plotly", repos = "http://cran.rstudio.com")
library(plotly)
auto <- ISLR2::Auto %>%
mutate(cylinders = as.factor(cylinders))

plot_ly(1

data = auto,
x = ~horsepower, 2

y = ~mpg,
text = ~name,
type = "scatter", 3

mode = "markers",
hoverinfo = "text+x+y" 4

)
g <- ggplot(auto, aes(x = horsepower, y = mpg, label = name)) +
geom_point()

ggplotly(g)
plot_ly(
x = auto$mpg,
y = auto$weight,
z = auto$horsepower, 1

color = auto$cylinders,
type = "scatter3d", 2

mode = "markers",
marker = list(size = 4) 3

)

73

Part II

Training models

74

5 Training predictive models

R provides a very large number of packages with functions for fitting predictive models. While
there is some consistency in how models are trained, there are many differences. For example,
some models can only be trained using the matrix interface so cannot be used easily with
a formula. All of this can be overwhelming for new users. It would be nice if there was a
consistent interface to all models.

There are various packages that address this. Here is a small selection.

• tidymodels (a collection of packages that share a common design philosophy with tidy-
verse and are designed to work together)

• caret (Classification And REgression Training)
• modelr (part of the tidyverse, but less powerful than tidymodels
• mlr3
• h2o.ai (in contrast to the other packages, this is a commercial product that supports

the full machine learning workflow from development to deployment)

In this course, we will focus on tidymodels.

5.1 What is tidymodels?

The tidymodels package is developed by Max Kuhn who now works at RStudio / posit. It was
first released in 2018 and is still under active development. It is an ecosystem of packages that
share a common design philosophy and are designed to work together. The packages include

• parsnip for model specification
• recipes for data preprocessing
• rsample for resampling
• yardstick for model evaluation
• tune for hyperparameter tuning
• workflows for modeling workflows
• tidyposterior for Bayesian modeling

The tidymodels packages are designed to work with the tidyverse and tidydata principles.
The packages are designed to be modular and extensible. They are loaded using the com-
mand.

75

https://topepo.github.io/caret/
https://modelr.tidyverse.org/
https://mlr3.mlr-org.com/
https://www.h2o.ai/

library(tidymodels)

-- Attaching packages -------------------------------------- tidymodels 1.3.0 --

v broom 1.0.8 v recipes 1.3.1
v dials 1.4.0 v rsample 1.3.0
v dplyr 1.1.4 v tibble 3.3.0
v ggplot2 3.5.2 v tidyr 1.3.1
v infer 1.0.8 v tune 1.3.0
v modeldata 1.4.0 v workflows 1.2.0
v parsnip 1.3.1 v workflowsets 1.1.0
v purrr 1.0.4 v yardstick 1.3.2

-- Conflicts --- tidymodels_conflicts() --
x purrr::discard() masks scales::discard()
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
x recipes::step() masks stats::step()

The packages were developed with the aim to making it easy to follow best practices.

INFO Further information

• Go to https://www.tidymodels.org/ to learn more about tidymodels
• Links to all tidymodels packages https://www.tidymodels.org/packages/
• Example code for all supported models https://parsnip.tidymodels.org/articles/

Examples.html
• Tidy modeling with R by Max Kuhn and Julia Silge
• An overview of all packages in the tidymodels ecosystem can be found at https:

//www.tidymodels.org/packages/

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidymodels)

76

https://www.tidymodels.org/
https://www.tidymodels.org/packages/
https://parsnip.tidymodels.org/articles/Examples.html
https://parsnip.tidymodels.org/articles/Examples.html
https://www.tmwr.org/
https://www.tidymodels.org/packages/
https://www.tidymodels.org/packages/

6 Workflows: Connecting the parts

Initially, one might think of a model as just the specific method or algorithm, for example
a linear regression or a random forest; it is however more than that. Before we train the
algorithm, we may need to preprocess the data. To name a few examples, we may want to

• normalize the data,
• transform into principal components,
• select a subset of features based on their properties,
• and/or handle missing values.

In many cases, these steps depend on the training data as much as the trained method itself.
If we want to predict new data, they also need to pass the same preprocessing steps before
the trained algorithm can be applied. It is therefore better to consider a model as being
a combination of preprocessing and method. We may take this a step further and consider
postprocessing the outcome/prediction of the trained method. The following graph summarizes
the modeling workflow. The data is first preprocessed, then the method is applied, and finally
the predictions are postprocessed. Preprocessing, method, and postprocessing together make
up the model and can all depend on the training data.

77

Modeling workflow

6.1 Workflows in tidymodels

As we’ve seen, training a model is a multi-step process. We need to consider:

• defining the model
• training and validating the model
• deploying the model

Figure 7.1 summarizes this modeling workflow and shows how the individual steps are imple-
mented in the tidymodels framework.

The left column covers the model definition part. A complete model definition requires:

• Preprocessing (recipe package - see Chapter 7)
• Model specification (parsnip package - see Chapter 8, Chapter 10)
• Postprocessing (probably - see Section 11.1.2)

78

Figure 6.1: Modeling workflow

The workflow package from tidymodels, allows to combine the first two steps into a single
workflow object. The workflow object can then be used to train and validate the model. Only
the preprocessing and model specification can be included in the workflow at the moment.
While the postprocessing step should be part of the full model process, the workflow package
doesn’t support it. For now, the postprocessing step has to be done separately. For example,
we will see in Section 11.1.2 how the probably package can be used to define a threshold for
binary classification models. In this class, we will only use postprocessing for classification
models.

The workflow package is also able to orchestrate the model tuning and validation. It in-
volves:

• Model tuning (tune package - see Chapter 14)
• Model validation (rsample, yardstick packages - see Chapter 12, Chapter 13)
• Tune postprocessing (probably package - see Chapter 14)

The objective of model tuning is to find the best model parameters. This can include the
model hyperparameters (e.g. the number of trees in a random forest) and the preprocessing
parameters (e.g. the number of principal components in a PCA). The tune package allows
to define potential values and combinations of these parameters. This combined with the
validation strategy defined using the rsample package, allows tune to examine the performance
of different models and select the “best” one. The performance is measured using the various
metrics provided by the yardstick package.

79

At the end of the model training step, we end up with a final trained workflow for deployment.
For now, this means

• predict new data using the final model by:

– preprocessing the new data using the (tuned) preprocessing steps
– predicting with the (tuned) model

• if applicable, postprocessing the predictions (e.g. applying a threshold for the predicted
class probabilities)

6.2 Workflow example

The following chapters covers the components of workflows in more detail. This can make it
difficult to see the big picture. You can find complete workflows in the examples part.

• Chapter 25 covers preprocessing, model definition, tuning using cross-validation, finaliz-
ing the tuned model, and validating with a holdout set.

• Chapter 26 covers preprocessing, model definition, tuning using cross-validation, thresh-
old selection using cross-validation results of the best mdoel, and prediction with the
tuned model and threshold.

6.3 Models vs. workflows

It may initially be confusing to have a second way to build models. However, there is consis-
tency between using both. As can be seen from the following table, the two approaches are
similar and only differ in the way the models and the formula are specified.

Task

Model

Workflow

Specification

Validation

Model fit

Prediction

Augmenting a dataset

80

As we will see in Chapter 7 and Chapter 14, workflows are required to incorporate preprocessing
into the model building process and to tune model parameters. It is therefore best, to use
workflows and use simple models only when absolutely necessary.

INFO Further information

• Take the short datacamp course at https://app.datacamp.com/learn/courses/
modeling-with-tidymodels-in-r

• Go to https://workflows.tidymodels.org/ to learn more about the workflows pack-
age

• The workflowsets package allows to combine multiple workflows into a single ob-
ject. This is useful when you want to compare multiple preprocessing steps and/or
multiple models at the same time. We will not cover this package in this class.

81

https://app.datacamp.com/learn/courses/modeling-with-tidymodels-in-r
https://app.datacamp.com/learn/courses/modeling-with-tidymodels-in-r
https://workflowsets.tidymodels.org/

7 Data preprocessing

We learned in the previous chapters, how to use dplyr to preprocess data. While this is useful
for data exploration and cleanup, it is not enough for building models. For example, you may
need to normalize predictors prior to the actual training step. The normalization transforma-
tion depends on the distribution of the training data and the exact same transformation needs
to be applied to new data. Because of this, it is important to include preprocessing steps in
the modeling pipeline.

The preprocessing steps can be used to:

• create new features,
• transform the data to make it more suitable for the model,
• introduce non-linearity into the model
• reduce the number of features, and
• impute missing data

Figure 7.1: Preprocessing using recipe

The tidymodels framework makes this easy. The preprocessing steps are defined using the
recipe package and combined with the model using a pipeline that is created using the

82

workflows package. In this chapter, we will learn how to use the recipe package to preprocess
data and build models.

Load required packages:

library(tidyverse)
library(tidymodels)
library(patchwork)
library(kableExtra)
library(DT)

7.1 Preprocessing data with recipes

Let’s use the mtcars dataset as an example. The mtcars dataset contains 32 observations
(rows) and 11 variables (columns); check ?mtcars for details on the dataset. The goal is to
predict the fuel consumption (mpg) of a car based on the other variables. Here is the dataset:

data <- datasets::mtcars %>% as_tibble(rownames = "car")
data %>%
head() %>%
knitr::kable()

car mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet
Sportabout

18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Two of the variables are categorical; transmission type (am) and engine shape (vs). We can
also see that the continuous variables have different scales. For example, the displacement
(wt) is in the hundreds while the number of cylinders (cyl) is in the single digits. Our plan for
the preprocessing steps in the modeling pipeline is to:

• Convert the categorical variables to factors
• Normalize the continuous variables

83

We will use the recipe package to define the preprocessing steps. The first step is to create a
recipe object using the recipe() function. The first argument is a formula that specifies the
outcome variable and the predictors. The second argument is the data frame that contains the
data. The recipe() function returns a recipe object that contains the preprocessing steps.
The summary() function can be used to display the recipe object:

formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs +
am + gear + carb

rec_obj <- recipe(formula, data = data)
summary(rec_obj)

A tibble: 11 x 4
variable type role source
<chr> <list> <chr> <chr>

1 cyl <chr [2]> predictor original
2 disp <chr [2]> predictor original
3 hp <chr [2]> predictor original
4 drat <chr [2]> predictor original
5 wt <chr [2]> predictor original
6 qsec <chr [2]> predictor original
7 vs <chr [2]> predictor original
8 am <chr [2]> predictor original
9 gear <chr [2]> predictor original
10 carb <chr [2]> predictor original
11 mpg <chr [2]> outcome original

The output tells us which variables are included in the model and what their respective role
is. The role is just a label that is used to identify the variables. For our use, the automatically
assigned roles of predictor and outcome are fine.

Now that we have a recipe, we can add preprocessing steps. The functions have the general
format step_{X},

rec_obj <- step_{X}(rec_obj, ..., arguments) ## or
rec_obj <- rec_obj %>% step_{X}(..., arguments)

The ... stands for a selection of variables. This could either be a list of variable names
or a selector like all_predictors, all_numeric, or similar ones. More about this later.
The remaining arguments are keyword arguments and require specifying the name of the
argument.

The function step_num2factor converts a numerical column to a factor column. The first
argument is the recipe object. The second argument is the name of the variable to be converted.

84

The levels argument is used to specify the levels of the factor. The transform argument is
used to specify a function that is applied to the variable before it is converted to a factor.

rec_obj <- rec_obj %>%
step_num2factor(vs, transform = function(x) x + 1,

levels = c("V-shaped", "straight")) %>%
step_num2factor(am, transform = function(x) x + 1,

levels = c("automatic", "manual"))

The levels array is used to map the number in the column vs to a string. The values of vs
are 0 and 1, so a simple lookup won’t work. We need to first transform the value before we
can use it as an index into the levels array. This is done using the transform function. For
a value of 0 is changed to 1 by the transform function and then used as a index to look up
the string “V-shaped” in the levels array. Similarly, a value of 1 is changed to 2 and then
through lookup converted to “straight”. If your values are already mapping to the correct
indices, you can omit the transform argument. Finally, the whole column is changed to a
factor. The second step does a similar transformation of the am column.

We can look at the result of the recipe so far using the prep() and bake() functions. The
prep() function trains the steps using, in this case, the data. You can use the training
argument to specify a different dataset. The bake() function applies the recipe to the data.
The new_data argument is used to specify a different dataset. If the new_data argument is
omitted, the recipe is applied to the data that was used to train the recipe.

rec_obj %>%
prep() %>%
bake(new_data = NULL) %>%
top_n(4)

Selecting by mpg

A tibble: 4 x 11
cyl disp hp drat wt qsec vs am gear carb mpg

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <dbl> <dbl> <dbl>
1 4 78.7 66 4.08 2.2 19.5 straight manual 4 1 32.4
2 4 75.7 52 4.93 1.62 18.5 straight manual 4 2 30.4
3 4 71.1 65 4.22 1.84 19.9 straight manual 4 1 33.9
4 4 95.1 113 3.77 1.51 16.9 straight manual 5 2 30.4

Applying the recipe to the dataset results in a tibble where the columns vs and am are now
factors.

85

The next step is to normalize the continuous variables. The step_normalize() function is
used to normalize the variables.

rec_obj <- rec_obj %>%
step_normalize(all_numeric_predictors())

rec_obj %>%
prep() %>%
bake(new_data = NULL) %>%
top_n(4)

Selecting by mpg

A tibble: 4 x 11
cyl disp hp drat wt qsec vs am gear carb mpg

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <dbl> <dbl> <dbl>
1 -1.22 -1.23 -1.18 0.904 -1.04 0.907 straight manual 0.424 -1.12 32.4
2 -1.22 -1.25 -1.38 2.49 -1.64 0.376 straight manual 0.424 -0.503 30.4
3 -1.22 -1.29 -1.19 1.17 -1.41 1.15 straight manual 0.424 -1.12 33.9
4 -1.22 -1.09 -0.491 0.324 -1.74 -0.531 straight manual 1.78 -0.503 30.4

Here, we use the all_numeric_predictors() selector to specify all the numeric variables
that are labeled as predictor. During the prep step, the mean and standard deviation of
the variables are computed and stored with the recipe. The values are used in the bake step
to transform the data. As we can see, the continuous variables are now normalized. Had we
used all_numeric instead of all_numeric_predictors, the outcome variable mpg would have
been normalized as well.

To summarize, the recipe for preprocessing the data is:

formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs +
am + gear + carb

rec_obj <- recipe(formula, data = data) %>%
step_num2factor(vs, transform = function(x) x + 1,

levels = c("V-shaped", "straight")) %>%
step_num2factor(am, transform = function(x) x + 1,

levels = c("automatic", "manual")) %>%
step_normalize(all_numeric_predictors())

86

LIGHTBULB Todo

Now is a good time to look through the reference of the recipe package to get an overview
of what is available.

In the following, we highlight some of the more commonly used functions.

7.2 Transformations of individual features

The following steps apply numerical transformations

• step_inverse: 𝑓(𝑥) = 1/𝑥
• step_invlogit: 𝑓(𝑥) = 1/(1 + 𝑒𝑥𝑝(−𝑥))
• step_log: 𝑓(𝑥) = 𝑙𝑜𝑔(𝑥)
• step_logit: 𝑓(𝑥) = 𝑙𝑜𝑔(𝑥/(1 − 𝑥))
• step_sqrt: 𝑓(𝑥) =

√
𝑥

The step_mutate() can be used like the dplyr::mutate function.

The Box-Cox transformation and the Yeo-Johnson transformation can be used to transform
skewed data to have a more normal distribution (see wikipedia).

• step_BoxCox: Box-Cox transformation for non-negative data
• step_YeoJohnson: Yeo-Johnson transformation

All these steps transform a single column and replace the column with the transformed value.
This is different for the step_poly function.

xy <- tibble(
x = seq(-1, 1, length.out = 100),
y = seq(-1, 1, length.out = 100)

)

transformed <- recipe(y ~ x, data = xy) %>%
step_poly(x, degree = 3) %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 4) %>%
kableExtra::kable_styling(full_width = FALSE)

87

https://recipes.tidymodels.org/reference/index.html
https://en.wikipedia.org/wiki/Power_transform

y x_poly_1 x_poly_2 x_poly_3

-1.0000 -0.1715 0.2170 -0.2492
-0.9798 -0.1680 0.2038 -0.2190
-0.9596 -0.1646 0.1910 -0.1903
-0.9394 -0.1611 0.1783 -0.1632
-0.9192 -0.1576 0.1660 -0.1375

-0.8990 -0.1542 0.1539 -0.1132

The result of applying the step_poly function is three new columns x_poly_1, x_poly_2, and
x_poly_3. The columns contain the first three orthogonal polynomials of the x column. The
degree argument specifies the degree of the polynomials, here 3. The role argument is used
to specify the role of the new columns. The default is predictor.

Figure 7.2 shows the effect of applying the step_poly function to the x column. The first
polynomial x_poly_1 is linear, x_poly_2 is a transformation with a quadratic function, and
x_poly_3 is a cubic function. The polynomials are orthogonal, which means that they are
uncorrelated. This is useful when using the polynomials as predictors in a regression model.

transformed_long <- transformed %>%
pivot_longer(c(x_poly_1, x_poly_2, x_poly_3))

ggplot(transformed_long, aes(x = y, y = value,
color = name, linetype = name)) +

geom_line() +
labs(x = "x", y = "x_poly_i", color = "Name", linetype = "Name")

88

−0.2

−0.1

0.0

0.1

0.2

−1.0 −0.5 0.0 0.5 1.0
x

x_
po

ly
_i

Name

x_poly_1

x_poly_2

x_poly_3

Figure 7.2: Orthogonal polynomials created using step_poly

Finally, there are several functions to convert a column to a variety of splines.

• step_ns: Natural spline basis functions
• step_bs: B-spline basis functions
• step_spline_b: Basis splines
• step_spline_convex: Convex splines
• step_spline_monotone: Monotone splines
• step_spline_natural: Natural splines
• step_spline_nonnegative: Non-negative splines

7.3 Discretizing numeric variables

Sometimes, it can be useful to discretize a numeric variable, this means, convert the nu-
meric values into a set of factors. This can be used for stepwise linear regression. The
step_discretize function will convert a numeric variable into a set of factors using the quan-
tiles of the variable.

transformed <- recipe(y ~ x, data = xy) %>%
step_discretize(x, num_breaks = 5) %>%
prep() %>%
bake(new_data = NULL)

89

transformed %>%
head() %>%
knitr::kable(digits = 4) %>%
kableExtra::kable_styling(full_width = FALSE)

x y

bin1 -1.0000
bin1 -0.9798
bin1 -0.9596
bin1 -0.9394
bin1 -0.9192

bin1 -0.8990

By default, step_discretize will create four factors. Here, we specify num_breaks = 5 to
create five factors. Figure 7.3 shows the effect of applying the step_discretize function.

ggplot(transformed, aes(x = y, y = x)) +
geom_point()

bin1

bin2

bin3

bin4

bin5

−1.0 −0.5 0.0 0.5 1.0
y

x

Figure 7.3: Factor levels created using step_discretize

90

An alternative to using quantiles is to specify the breaks explicitly using the step_cut func-
tion.

breaks <- c(-1.1, -0.8, 0.6, 0.7, 0.75)
transformed <- recipe(y ~ x, data = xy) %>%
step_cut(x, breaks = breaks) %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 4) %>%
kableExtra::kable_styling(full_width = FALSE)

x y

[-1.1,-0.8] -1.0000
[-1.1,-0.8] -0.9798
[-1.1,-0.8] -0.9596
[-1.1,-0.8] -0.9394
[-1.1,-0.8] -0.9192

[-1.1,-0.8] -0.8990

Figure 7.4 shows the effect of applying the step_cut function.

ggplot(transformed, aes(x = y, y = x)) +
geom_vline(xintercept = breaks, color = "grey") +
geom_point()

91

[−1.1,−0.8]

(−0.8,0.6]

(0.6,0.7]

(0.7,0.75]

(0.75,1]

−1.0 −0.5 0.0 0.5 1.0
y

x

Figure 7.4: Factor levels created using step_cut

During training, the range of the data will be used to determine the left and right boundaries of
the bins. If a new data point falls outside this range, the value will be mapped to NA. will cause
problems when predicting new data. To avoid this, we can use the include_outside_range
argument to specify that values outside the range will be assigned to the first or last bin.

transformed <- recipe(y ~ x, data = xy) %>%
step_cut(x, breaks = breaks, include_outside_range = TRUE) %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 4) %>%
kableExtra::kable_styling(full_width = FALSE)

x y

[min,-0.8] -1.0000
[min,-0.8] -0.9798
[min,-0.8] -0.9596
[min,-0.8] -0.9394
[min,-0.8] -0.9192

92

[min,-0.8] -0.8990

You can see that the lowest range is now labeled as [min, -0.8].

7.4 Data normalization

Several model methods require data to be on the same scale. For example, assume a case
where one property has a values in the 1000s, while another property has values between 0
and 10. In a 𝑘-nearest neighbor model the first property will dominate any distance measure
while the second property will have little influence. To avoid this, we can normalize the data.
The step_normalize function is used to normalize the data.

rec_obj <- recipe(formula, data = data) %>%
step_normalize(all_numeric_predictors())

transformed <- rec_obj %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 3)

cyl disp hp drat wt qsec vs am gear carb mpg

-0.105 -0.571 -0.535 0.568 -0.610 -0.777 -0.868 1.190 0.424 0.735 21.0
-0.105 -0.571 -0.535 0.568 -0.350 -0.464 -0.868 1.190 0.424 0.735 21.0
-1.225 -0.990 -0.783 0.474 -0.917 0.426 1.116 1.190 0.424 -1.122 22.8
-0.105 0.220 -0.535 -0.966 -0.002 0.890 1.116 -0.814 -0.932 -1.122 21.4
1.015 1.043 0.413 -0.835 0.228 -0.464 -0.868 -0.814 -0.932 -0.503 18.7

-0.105 -0.046 -0.608 -1.565 0.248 1.327 1.116 -0.814 -0.932 -1.122 18.1

Normalization will shift and scale each numerical column, so that its mean is 0 and the standard
deviation is 1.

An alternative to normalization is set_range. In this case, the data will be transformed to
fall into a given range.

93

rec_obj <- recipe(formula, data = data) %>%
step_range(all_numeric_predictors())

transformed <- rec_obj %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 3)

cyl disp hp drat wt qsec vs am gear carb mpg

0.5 0.222 0.205 0.525 0.283 0.233 0 1 0.5 0.429 21.0
0.5 0.222 0.205 0.525 0.348 0.300 0 1 0.5 0.429 21.0
0.0 0.092 0.145 0.502 0.206 0.489 1 1 0.5 0.000 22.8
0.5 0.466 0.205 0.147 0.435 0.588 1 0 0.0 0.000 21.4
1.0 0.721 0.435 0.180 0.493 0.300 0 0 0.0 0.143 18.7
0.5 0.384 0.187 0.000 0.498 0.681 1 0 0.0 0.000 18.1

The default range is [0, 1]. You can specify a different range using the min and max argu-
ment.

LIGHTBULB Useful to know

While methods like nearest neighbor‘ require normalization to work properly, other meth-
ods are not affected by the scale of the data. For example, decision trees handle each
variable independently. However, it can still be beneficial to bring data to the same scale
for numerical efficiency and stability.

7.5 Imputing missing data

If you expect your future data to have missing data, it will be useful to derive a strategy to
deal with missing data not only for your training data but also for new data. The family of
step_impute_* functions provide a variety of imputation strategies that are trained on the
training data and applied to new data. To demonstrate this functionality, we will create a new
dataset that contains missing values.

set.seed(123)
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%

94

mutate_at(vars(cyl, wt, am),
function(x) ifelse(runif(length(x)) < 0.1, NA, x)) %>%

mutate(
vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

missing_cyl <- is.na(data["cyl"])
missing_wt <- is.na(data["wt"])
missing_am <- is.na(data["am"])
missing_rows <- missing_cyl | missing_wt | missing_am

datatable(data[missing_rows,], rownames = FALSE)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/Rtmpo95Vee/file16ad8487e74b8/widget16ad866210136.html screenshot completed

Show 10 entries Search:

Showing 1 to 6 of 6 entries Previous 1 Next

Datsun
710 22.8 4 108 93 3.85 18.61 straight manual 4 1

Valiant 18.1 225 105 2.76 3.46 20.22 straight automatic 3 1

Merc
280 19.2 6 167.6 123 3.92 3.44 18.3 straight 4 4

Fiat
128 32.4 78.7 66 4.08 2.2 19.47 straight manual 4 1

Honda
Civic 30.4 4 75.7 52 4.93 18.52 straight manual 4 2

Ferrari
Dino 19.7 6 145 175 3.62 15.5 V-

shaped manual 5 6

car ▲
▼ mpg▲▼ cyl▲▼ disp▲▼ hp▲▼ drat▲▼ wt▲▼ qsec▲▼ vs ▲

▼ am ▲
▼ gear▲▼ carb▲▼

The mutate_at function adds about 10% missing data to the columns cyl, wt, and am.

For continuous numeric data, the mean and median are the most common imputation strategies
(step_impute_mean or step_impute_median). For nominal data, the most common value is
used (step_impute_mode).

95

transformed <- recipe(mpg ~ ., data = data) %>%
step_impute_mean(wt) %>%
step_impute_median(cyl) %>%
step_impute_mode(am) %>%
prep() %>%
bake(new_data = NULL)

datatable(transformed[missing_rows,] %>% head(),
rownames = FALSE) %>%
formatRound(columns = c("mpg", "cyl", "disp", "hp", "drat",

"wt", "qsec", "gear", "carb"), digits = 3)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/Rtmpo95Vee/file16ad8597e7050/widget16ad87bffc216.html screenshot completed

Show 10 entries Search:

Showing 1 to 6 of 6 entries Previous 1 Next

Datsun
710 4.000 108.000 93.000 3.850 3.319 18.610 straight manual 4.000 1.000 22.800

Valiant 6.000 225.000 105.000 2.760 3.460 20.220 straight automatic 3.000 1.000 18.100

Merc
280 6.000 167.600 123.000 3.920 3.440 18.300 straight automatic 4.000 4.000 19.200

Fiat
128 6.000 78.700 66.000 4.080 2.200 19.470 straight manual 4.000 1.000 32.400

Honda
Civic 4.000 75.700 52.000 4.930 3.319 18.520 straight manual 4.000 2.000 30.400

Ferrari
Dino 6.000 145.000 175.000 3.620 3.319 15.500 V-

shaped manual 5.000 6.000 19.700

car ▲
▼ cyl▲▼ disp▲▼ hp▲▼ drat▲▼ wt▲▼ qsec▲▼ vs ▲

▼ am ▲
▼ gear▲▼ carb▲▼ mpg▲▼

In our example, this added the values 3.3188621 to the missing values in the wt column, 6 to
the missing values in the cyl column, and numeric to the missing values in the am column.

In some cases, a better approach is to use a model to impute the missing values.

• step_impute_linear: Impute numeric variables via a linear model
• step_impute_bag: Impute via bagged trees
• step_impute_knn: Impute via k-nearest neighbors

96

We known from exploratory data that the wt columns is correlated with the disp and hp
columns. We can use this information to impute the missing values in the wt column.

transformed <- recipe(mpg ~ ., data = data) %>%
step_impute_linear(wt, impute_with = imp_vars(disp, hp)) %>%
prep() %>%
bake(new_data = NULL)

datatable(transformed[missing_wt,], rownames = FALSE) %>%
formatRound(columns = c("wt"), digits = 3)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/Rtmpo95Vee/file16ad8437c26ff/widget16ad8be451f6.html screenshot completed

Show 10 entries Search:

Showing 1 to 3 of 3 entries Previous 1 Next

Datsun
710 4 108 93 3.85 2.390 18.61 straight manual 4 1 22.8

Honda
Civic 4 75.7 52 4.93 2.231 18.52 straight manual 4 2 30.4

Ferrari
Dino 6 145 175 3.62 2.492 15.5 V-

shaped manual 5 6 19.7

car ▲
▼ cyl▲▼ disp▲▼ hp▲▼ drat▲▼ wt▲▼ qsec▲▼ vs ▲

▼ am ▲
▼ gear▲▼ carb▲▼ mpg▲▼

Here we used the step_impute_linear function to impute the missing values in the wt column.
The impute_with argument is used to specify the variables that are used to impute the missing
values. The imp_vars function is required here to specify the variables. We can see that in
this case, the imputed values are different.

7.6 Dummy variables

Most methods cannot handle categorical variables without preprocessing. A common approach
is to convert a categorical variable with 𝐶 levels into several new columns that contain only
1 and 0 values. If reference cell parametrization is used, 𝐶 − 1 new columns are created for
all but the first factor level. In recipes, we use the function step_dummy to create these new
dummy variables. Here is an example:

97

penguins <- readr::read_csv("data/penguins_modified.csv.gz") %>%
sample_frac()

recipe(~ species, data = penguins) %>%
step_dummy(species, keep_original_cols = TRUE) %>%
prep() %>%
bake(new_data = NULL) %>%
head()

A tibble: 6 x 3
species species_Chinstrap species_Gentoo
<fct> <dbl> <dbl>

1 Chinstrap 1 0
2 Chinstrap 1 0
3 Gentoo 0 1
4 Gentoo 0 1
5 Chinstrap 1 0
6 Chinstrap 1 0

We set the argument keep_original_cols to TRUE to include the original variable. By default,
it would be removed. We can see that the step creates two new variables species_Chinstrap
and species_Gentoo. They have values of 0 or 1, depending the value of species. If the
species is Gentoo, species_Gentoo is set to 1 and the other variable to 0. For Chinstrap it is
the other way round. For Adelie, both values are set to 0. Adelie is the reference value. This
type of encoding is used for models that cannot deal with correlated data.

An alternative is one hot encoding. In this case, we create new columns for each factor level.

recipe(~ species, data = penguins) %>%
step_dummy(species, one_hot = TRUE, keep_original_cols = TRUE) %>%
prep() %>%
bake(new_data = NULL) %>%
head()

A tibble: 6 x 4
species species_Adelie species_Chinstrap species_Gentoo
<fct> <dbl> <dbl> <dbl>

1 Chinstrap 0 1 0
2 Chinstrap 0 1 0
3 Gentoo 0 0 1
4 Gentoo 0 0 1
5 Chinstrap 0 1 0
6 Chinstrap 0 1 0

98

Setting one_hot = TRUE creates the additional column species_Adelie which is set to 1 for
species Adelie. One hot encoding is usually used for 𝑘-NN and neural networks to treat each
factor equivalently. As can be seen in Figure 7.5, with one hot encoding Euclidean distances
between the different factor levels are identical. With reference cell encoding, the reference
level has the same distance to all other levels and this distance is shorter than the distances
between the other levels.

Figure 7.5: Effect of approach to generate dummy variables on distances. Left: reference cell
encoding, right: one hot encoding.

To convert all nominal or categorical predictors into dummy variables use:

step_dummy(all_nominal_predictors())

See Handling categorical predictors for more details on handling categorical variables in tidy-
models using recipes.

7.7 Interactions

The recipe package has also a way of defining interaction terms. While this could be done
using a formula, the step_interact function is particularly useful to define interactions with
variables that were created in a previous step.

Here is an example, where we first convert the vs predictor into a dummy variable using one-
hot-encoding. this replaces the vs predictor with vs_V.shaped and vs_straight. In the next
step, we want to create interaction terms of these two predictors with hp. We define this using

99

https://recipes.tidymodels.org/articles/Dummies.html

the formula ~ (vs_V.shaped + vs_straight):hp. If the factor has several levels, it will be
more concise to select the predictors using ‘starts_with(“vs”)’.

transformed <- recipe(mpg ~ vs + hp, data = data) %>%
step_dummy(vs, one_hot = TRUE) %>%
step_interact(~ starts_with("vs"):hp) %>%
prep() %>%
bake(new_data = NULL)

transformed %>% head(3)

A tibble: 3 x 6
hp mpg vs_V.shaped vs_straight vs_V.shaped_x_hp vs_straight_x_hp

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 110 21 1 0 110 0
2 110 21 1 0 110 0
3 93 22.8 0 1 0 93

We can see that step_interact creates two new columns, vs_V.shaped_x_hp and
vs_straight_x_hp. The interacting terms are separated using _x_ (sep argument).

The following example adds interaction terms between two factors that were one-hot-
encoded.

transformed <- recipe(mpg ~ vs + am, data = data) %>%
step_dummy(vs, am, one_hot = TRUE) %>%
step_interact(~ starts_with("vs"):starts_with("am")) %>%
prep() %>%
bake(new_data = NULL)

Warning: ! There are new levels in `am`: NA.
i Consider using step_unknown() (`?recipes::step_unknown()`) before
`step_dummy()` to handle missing values.

datatable(transformed %>% head(), rownames = FALSE)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/Rtmpo95Vee/file16ad83adfd804/widget16ad83ddf0cce.html screenshot completed

100

Show 10 entries Search:

Showing 1 to 6 of 6 entries Previous 1 Next

21 1 0 0 1 0 1

21 1 0 0 1 0 1

22.8 0 1 0 1 0 0

21.4 0 1 1 0 0 0

18.7 1 0 1 0 1 0

18.1 0 1 1 0 0 0

mpg▲▼ vs_V.shaped▲▼ vs_straight▲▼ am_automatic▲▼ am_manual▲▼ vs_V.shaped_x_am_automatic▲▼ vs_V.shaped_x_am_manual▲▼ vs_

This adds four new columns.

You can also create all possible interactions by using mpg ~ .:.. Here, the . represents all
remaining columns after removing mpg.

transformed <- recipe(mpg ~ hp + wt + vs, data = data) %>%
step_interact(mpg ~ .^2) %>%
prep() %>%
bake(new_data = NULL)

Warning: Categorical variables used in `step_interact()` should probably be avoided;
This can lead to differences in dummy variable values that are produced by
?step_dummy (`?recipes::step_dummy()`). Please convert all involved variables
to dummy variables first.

datatable(transformed %>% head(), rownames = FALSE)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/Rtmpo95Vee/file16ad8713856e2/widget16ad829d04980.html screenshot completed

101

Show 10 entries Search:

Showing 1 to 6 of 6 entries Previous 1 Next

110 2.62 V-
shaped 21 288.2 0 0

110 2.875 V-
shaped 21 316.25 0 0

93 straight 22.8 93

110 3.215 straight 21.4 353.65 110 3.215

175 3.44 V-
shaped 18.7 602 0 0

105 3.46 straight 18.1 363.3 105 3.46

hp▲▼ wt▲▼ vs ▲
▼ mpg▲▼ hp_x_wt▲▼ hp_x_vsstraight▲▼ wt_x_vsstraight▲▼

Alternatively, you can use mpg ~ .**2 or mpg ~ .^2 to achieve the same result.

If you only want to include interactions between numerical predictors, you can use the
all_numeric_predictors() selector like in this formula: ~ all_numeric_predictors() **
2

transformed <- recipe(mpg ~ hp + disp + vs, data = data) %>%
step_interact(~ all_numeric_predictors() ** 2) %>%
prep() %>%
bake(new_data = NULL)

datatable(transformed %>% head(), rownames = FALSE)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/Rtmpo95Vee/file16ad82a4b94cf/widget16ad84816b7ba.html screenshot completed

Note, this will not add quadratic terms.

LIGHTBULB Useful to know

Table 7.8 shows the results of adding an interaction between hp and disp. The original
predictors have ranges of hp = [52, 335] and disp = [71.1, 472]. Both ranges are
similar. The interaction term however has a much wider and larger range hp_x_disp =

102

Table 7.8: Table created by adding all interaction between numerical predictors

Show 10 entries Search:

Showing 1 to 6 of 6 entries Previous 1 Next

110 160 V-shaped 21 17600

110 160 V-shaped 21 17600

93 108 straight 22.8 10044

110 258 straight 21.4 28380

175 360 V-shaped 18.7 63000

105 225 straight 18.1 23625

hp▲▼ disp▲▼ vs ▲
▼ mpg▲▼ hp_x_disp▲▼

[3936.4, 101200.0].
If you use a model that is based on distances like 𝑘-NN, it is important to normalize the
data (see Section 7.4). Otherwise, the interaction term will dominate the distances and
reduce the influence the main terms can have on the model.

7.8 Principal components

The recipe package has several functions that combine multiple columns. Here, we will only
discuss the step_pca function. It is used to create principal components. For more information
on PCA, see Section 18.1 It is recommended to use the step_normalize function prior to using
step_pca.

data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

transformed <- recipe(mpg ~ ., data = data) %>%
step_normalize(all_numeric_predictors()) %>%

103

step_pca(all_numeric_predictors(), num_comp = 3) %>%
prep() %>%
bake(new_data = NULL)

transformed %>% head() %>% knitr::kable(digits = 3)

car vs am mpg PC1 PC2 PC3

Mazda RX4 V-shaped manual 21.0 -0.647 1.183 0.270
Mazda RX4 Wag V-shaped manual 21.0 -0.622 0.986 -0.061
Datsun 710 straight manual 22.8 -2.308 -0.293 0.352
Hornet 4 Drive straight automatic 21.4 -0.155 -1.981 0.281
Hornet Sportabout V-shaped automatic 18.7 1.628 -0.857 0.933
Valiant straight automatic 18.1 -0.107 -2.437 -0.058

The predictors are now reduced to three numerical columns called PC1, PC2, and PC3. The
outcome mpg and the two categorical predictors vs and am are left unchanged.

7.9 Filtering variables

So far, we covered preprocessing steps that transform columns into one or more columns. The
recipe package also contains methods to remove columns from the dataset. The most basic
ones are step_rm and step_select, which remove one or more column from the dataset by
name.

Other filters take the information in the column into account. step_filter_missing removes
columns where the number of missing data surpasses a given threshold. This is useful for
columns where imputation is not feasible.

The step_zv and step_nzv functions remove columns that are constant or almost constant.
Such columns contain in general little information and can be removed without limiting the
performance of models.

Another source for redundant information are columns that are highly correlated with other
columns or columns that are linear combinations of other columns. In some cases, leaving
these columns in the dataset can cause numerical problems. The step_corr function removes
columns that are highly correlated with other columns. The step_lincomb function removes
columns that are linear combinations of other columns.

104

INFO Further information

The tidymodels package parsnip is the package that is responsible to define and fit
models. You find detailed information about each of the model types, the specific engines
and their options in the documentation.

• https://recipes.tidymodels.org/ is the documentation for the recipe package.
• https://recipes.tidymodels.org/reference/index.html lists all the different prepro-

cessing steps that are available in recipe
• https://bookdown.org/max/FES/ This book by the authors of tidymodels covers

many aspects of feature engineering.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/model_workflow_recipe.png")
library(tidyverse)
library(tidymodels)
library(patchwork)
library(kableExtra)
library(DT)
data <- datasets::mtcars %>% as_tibble(rownames = "car")
data %>%
head() %>%
knitr::kable()

formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs +
am + gear + carb

rec_obj <- recipe(formula, data = data)
summary(rec_obj)
rec_obj <- rec_obj %>%
step_num2factor(vs, transform = function(x) x + 1,

levels = c("V-shaped", "straight")) %>%
step_num2factor(am, transform = function(x) x + 1,

levels = c("automatic", "manual"))
rec_obj %>%
prep() %>%
bake(new_data = NULL) %>%
top_n(4)

105

https://recipes.tidymodels.org/
https://recipes.tidymodels.org/reference/index.html
https://bookdown.org/max/FES/

rec_obj <- rec_obj %>%
step_normalize(all_numeric_predictors())

rec_obj %>%
prep() %>%
bake(new_data = NULL) %>%
top_n(4)

formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs +
am + gear + carb

rec_obj <- recipe(formula, data = data) %>%
step_num2factor(vs, transform = function(x) x + 1,

levels = c("V-shaped", "straight")) %>%
step_num2factor(am, transform = function(x) x + 1,

levels = c("automatic", "manual")) %>%
step_normalize(all_numeric_predictors())

xy <- tibble(
x = seq(-1, 1, length.out = 100),
y = seq(-1, 1, length.out = 100)

)

transformed <- recipe(y ~ x, data = xy) %>%
step_poly(x, degree = 3) %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 4) %>%
kableExtra::kable_styling(full_width = FALSE)

transformed_long <- transformed %>%
pivot_longer(c(x_poly_1, x_poly_2, x_poly_3))

ggplot(transformed_long, aes(x = y, y = value,
color = name, linetype = name)) +

geom_line() +
labs(x = "x", y = "x_poly_i", color = "Name", linetype = "Name")

transformed <- recipe(y ~ x, data = xy) %>%
step_discretize(x, num_breaks = 5) %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 4) %>%

106

kableExtra::kable_styling(full_width = FALSE)
ggplot(transformed, aes(x = y, y = x)) +
geom_point()

breaks <- c(-1.1, -0.8, 0.6, 0.7, 0.75)
transformed <- recipe(y ~ x, data = xy) %>%
step_cut(x, breaks = breaks) %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 4) %>%
kableExtra::kable_styling(full_width = FALSE)

ggplot(transformed, aes(x = y, y = x)) +
geom_vline(xintercept = breaks, color = "grey") +
geom_point()

transformed <- recipe(y ~ x, data = xy) %>%
step_cut(x, breaks = breaks, include_outside_range = TRUE) %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 4) %>%
kableExtra::kable_styling(full_width = FALSE)

rec_obj <- recipe(formula, data = data) %>%
step_normalize(all_numeric_predictors())

transformed <- rec_obj %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%
knitr::kable(digits = 3)

rec_obj <- recipe(formula, data = data) %>%
step_range(all_numeric_predictors())

transformed <- rec_obj %>%
prep() %>%
bake(new_data = NULL)

transformed %>%
head() %>%

107

knitr::kable(digits = 3)
set.seed(123)
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate_at(vars(cyl, wt, am),

function(x) ifelse(runif(length(x)) < 0.1, NA, x)) %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

missing_cyl <- is.na(data["cyl"])
missing_wt <- is.na(data["wt"])
missing_am <- is.na(data["am"])
missing_rows <- missing_cyl | missing_wt | missing_am

datatable(data[missing_rows,], rownames = FALSE)
transformed <- recipe(mpg ~ ., data = data) %>%
step_impute_mean(wt) %>%
step_impute_median(cyl) %>%
step_impute_mode(am) %>%
prep() %>%
bake(new_data = NULL)

datatable(transformed[missing_rows,] %>% head(),
rownames = FALSE) %>%
formatRound(columns = c("mpg", "cyl", "disp", "hp", "drat",

"wt", "qsec", "gear", "carb"), digits = 3)
transformed <- recipe(mpg ~ ., data = data) %>%
step_impute_linear(wt, impute_with = imp_vars(disp, hp)) %>%
prep() %>%
bake(new_data = NULL)

datatable(transformed[missing_wt,], rownames = FALSE) %>%
formatRound(columns = c("wt"), digits = 3)

penguins <- readr::read_csv("data/penguins_modified.csv.gz") %>%
sample_frac()

recipe(~ species, data = penguins) %>%
step_dummy(species, keep_original_cols = TRUE) %>%
prep() %>%
bake(new_data = NULL) %>%
head()

108

recipe(~ species, data = penguins) %>%
step_dummy(species, one_hot = TRUE, keep_original_cols = TRUE) %>%
prep() %>%
bake(new_data = NULL) %>%
head()

knitr::include_graphics("images/preprocess_dummy.png")
transformed <- recipe(mpg ~ vs + hp, data = data) %>%
step_dummy(vs, one_hot = TRUE) %>%
step_interact(~ starts_with("vs"):hp) %>%
prep() %>%
bake(new_data = NULL)

transformed %>% head(3)
transformed <- recipe(mpg ~ vs + am, data = data) %>%
step_dummy(vs, am, one_hot = TRUE) %>%
step_interact(~ starts_with("vs"):starts_with("am")) %>%
prep() %>%
bake(new_data = NULL)

datatable(transformed %>% head(), rownames = FALSE)
transformed <- recipe(mpg ~ hp + wt + vs, data = data) %>%
step_interact(mpg ~ .^2) %>%
prep() %>%
bake(new_data = NULL)

datatable(transformed %>% head(), rownames = FALSE)
transformed <- recipe(mpg ~ hp + disp + vs, data = data) %>%
step_interact(~ all_numeric_predictors() ** 2) %>%
prep() %>%
bake(new_data = NULL)

datatable(transformed %>% head(), rownames = FALSE)
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

transformed <- recipe(mpg ~ ., data = data) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors(), num_comp = 3) %>%
prep() %>%
bake(new_data = NULL)

109

transformed %>% head() %>% knitr::kable(digits = 3)

110

Part III

Regression models

111

8 Training regression models using tidymodels

Regression models aim to predict a continuous outcome variable from a set of predictor vari-
ables. You already learned about linear regression models in your previous class. In this
section, we will learn how to define and train models using the parsnip package from tidy-
models. Figure 8.1 shows how the parsnip package is part of the model definition component
of the modeling workflow.

Figure 8.1: Regression model definition using parsnip

First, load all the packages we will need.

library(tidyverse)
library(tidymodels)

8.1 The mtcars dataset

Let’s look at the mtcars dataset. It is distributed with R. We convert it to a tibble and show
the first few rows.

112

data <- datasets::mtcars %>%
as_tibble()

head(data)

A tibble: 6 x 11
mpg cyl disp hp drat wt qsec vs am gear carb

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1

The mtcars dataset contains 32 observations (rows) and 11 variables (columns); check ?mtcars
for details on the dataset. Note that the conversion to a tibble removed the row names. We
can preserve the rownames using the rownames keyword in the as_tibble() function.

Several of the variables are categorical variables. Here, we convert vs and am to factors and
leave the remaining variables as numbers. We first convert the data frame to a tibble and then
mutate these variables to factors.

data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)
data

A tibble: 32 x 12
car mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <dbl> <dbl>

1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 V-sh~ manu~ 4 4
2 Mazda RX4 ~ 21 6 160 110 3.9 2.88 17.0 V-sh~ manu~ 4 4
3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 stra~ manu~ 4 1
4 Hornet 4 D~ 21.4 6 258 110 3.08 3.22 19.4 stra~ auto~ 3 1
5 Hornet Spo~ 18.7 8 360 175 3.15 3.44 17.0 V-sh~ auto~ 3 2
6 Valiant 18.1 6 225 105 2.76 3.46 20.2 stra~ auto~ 3 1
7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 V-sh~ auto~ 3 4
8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 stra~ auto~ 4 2

113

9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 stra~ auto~ 4 2
10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 stra~ auto~ 4 4
i 22 more rows

We now have a preprocessed dataset that we can use to build a model to predict mpg using
the other variables. To test our model, we create an additional data set with two cars. Note
that we apply the same transformations to the new dataset as we did to the training set.

new_cars <- tibble(
car = c("test1", "test2"), cyl = c(4, 6), disp = c(100, 200),
hp = c(100, 200), drat = c(3, 4), wt = c(2, 3), qsec = c(10, 20),
vs = c(1, 0), am = c(1, 0), gear = c(3, 4), carb = c(1, 2)

) %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)
new_cars

A tibble: 2 x 11
car cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <dbl> <dbl>

1 test1 4 100 100 3 2 10 straight manual 3 1
2 test2 6 200 200 4 3 20 V-shaped automatic 4 2

8.2 Predicting mpg in the mtcars dataset using tidymodels

Here is how we train a linear regression model using tidymodels. The formula specifies the out-
come variable and the predictor variables. The formula is defined as outcome ~ predictor1
+ predictor2 +1 In our case, we want to predict mpg using all the other variables.
We could specify this as mpg~.. The . means all the other variables. However, it is better to
explicitly list the predictors to avoid mistakes.

formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

model <- linear_reg() %>%
set_engine("lm") %>%
fit(formula, data = data)

1Note that this is a simplified formula. More about formulas later.

114

The linear_reg() function specifies that we want to train a linear regression model. The
set_engine() function defines the actual model. Here it will be the lm model from base-R. We
could also use set_engine("glm") to use the glm function from base-R. The fit() function
trains the model. The result is an object of class linear_reg. Printing the model gives details
about the model.

model

parsnip model object

Call:
stats::lm(formula = mpg ~ cyl + disp + hp + drat + wt + qsec +

vs + am + gear + carb, data = data)

Coefficients:
(Intercept) cyl disp hp drat wt

12.30337 -0.11144 0.01334 -0.02148 0.78711 -3.71530
qsec vsstraight ammanual gear carb

0.82104 0.31776 2.52023 0.65541 -0.19942

We can also access the actual model using model$fit.

model$fit

Call:
stats::lm(formula = mpg ~ cyl + disp + hp + drat + wt + qsec +

vs + am + gear + carb, data = data)

Coefficients:
(Intercept) cyl disp hp drat wt

12.30337 -0.11144 0.01334 -0.02148 0.78711 -3.71530
qsec vsstraight ammanual gear carb

0.82104 0.31776 2.52023 0.65541 -0.19942

As is usual in R for predictive models, we can use the predict() function to predict mpg for
new data.

115

predict(model, new_data = new_cars)

A tibble: 2 x 1
.pred
<dbl>

1 18.8
2 20.7

The predict() function returns a tibble with the predicted values. At first glance, it seems
that it would be unnecessary to return a tibble. However, predict can return additional
information, so returning a tibble in this simple case is more consistent.

LIGHTBULB Useful to know

The parsnip::augment function is shortcut to predict a dataset and return a new tibble
that includes the predicted values.

augment(model, new_data = new_cars)

A tibble: 2 x 12
.pred car cyl disp hp drat wt qsec vs am gear carb
<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <dbl> <dbl>

1 18.8 test1 4 100 100 3 2 10 straight manual 3 1
2 20.7 test2 6 200 200 4 3 20 V-
shaped automatic 4 2

The predicted values are added as the new column .pred. If the dataset contains a
column with the actual values, the predicted values are compared to the actual values
and the difference is added as the new column .resid.2 The prefix . is used as an
indicator for derived columns. It also helps to avoid name clashes with existing columns.

Figure 8.2 shows the actual mpg values against the predicted values for the training data.

pred_ci <- predict(model, new_data = data, type = "conf_int")
df <- tibble(
actual = data$mpg,
predicted = predict(model, new_data = data)$.pred,
lower = pred_ci$.pred_lower,
upper = pred_ci$.pred_upper)

2This only works if you fit a parsnip model directly. If the model is created using a workflow, .resid is not
calculated, even if the outcome is included in the new_data column.

116

ggplot(df,
aes(x = actual, y = predicted, ymin = lower, ymax = upper)) +
geom_abline(color = "darkgrey") +
geom_errorbar(color = "darkgreen") +
geom_point() +
labs(x = "Actual mpg", y = "Predicted mpg") +
coord_fixed(ratio = 1)

10

15

20

25

30

35

10 15 20 25 30 35
Actual mpg

P
re

di
ct

ed
 m

pg

Figure 8.2: Comparing actual against predicted mpg values for the tidymodels model

In Figure 8.2, we added error bars to show the confidence interval of the predictions. They were
calculated using the command predict(model, new_data=data, type="conf_int").

117

INFO Further information

The tidymodels package parsnip is the package that is responsible to define and fit
models. You find detailed information about each of the model types, the specific engines
and their options in the documentation.

• https://parsnip.tidymodels.org/ is the documentation for the parsnip package.
• https://parsnip.tidymodels.org/reference/index.html lists all the different model

types that are available in parsnip
• https://parsnip.tidymodels.org/reference/linear_reg.html is the documentation for

the linear_reg() function. Here, you find a list of all the engines that can be used
with linear_reg().

• https://parsnip.tidymodels.org/reference/details_linear_reg_lm.html is the docu-
mentation for the lm engine. These specific pages will give you more details about
the different options that are available for each model.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/model_workflow_parsnip.png")
library(tidyverse)
library(tidymodels)
data <- datasets::mtcars %>%
as_tibble()

head(data)
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)
data
new_cars <- tibble(
car = c("test1", "test2"), cyl = c(4, 6), disp = c(100, 200),
hp = c(100, 200), drat = c(3, 4), wt = c(2, 3), qsec = c(10, 20),
vs = c(1, 0), am = c(1, 0), gear = c(3, 4), carb = c(1, 2)

) %>%
mutate(

118

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)
new_cars
formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

model <- linear_reg() %>%
set_engine("lm") %>%
fit(formula, data = data)

model
model$fit
predict(model, new_data = new_cars)
augment(model, new_data = new_cars)
pred_ci <- predict(model, new_data = data, type = "conf_int")
df <- tibble(
actual = data$mpg,
predicted = predict(model, new_data = data)$.pred,
lower = pred_ci$.pred_lower,
upper = pred_ci$.pred_upper)

ggplot(df,
aes(x = actual, y = predicted, ymin = lower, ymax = upper)) +
geom_abline(color = "darkgrey") +
geom_errorbar(color = "darkgreen") +
geom_point() +
labs(x = "Actual mpg", y = "Predicted mpg") +
coord_fixed(ratio = 1)

119

9 Measuring performance of regression models

The yardstick package from tidymodels contains a comprehensive collection of performance
metrics for regression and classification models. There are 16 metrics for regression models
in the yardstick package. You can use these metrics even if you use other packages for
modeling.

Figure 9.1: Measuring regression performance using yardstick

Figure 9.1 shows how the yardstick package fits into the modeling workflow. After you have
trained a regression model, you can use the yardstick package to measure its performance
on training data or on new data.

The package is loaded automatically when you load tidymodels.

library(tidymodels)

-- Attaching packages -------------------------------------- tidymodels 1.3.0 --

120

v broom 1.0.8 v recipes 1.3.1
v dials 1.4.0 v rsample 1.3.0
v dplyr 1.1.4 v tibble 3.3.0
v ggplot2 3.5.2 v tidyr 1.3.1
v infer 1.0.8 v tune 1.3.0
v modeldata 1.4.0 v workflows 1.2.0
v parsnip 1.3.1 v workflowsets 1.1.0
v purrr 1.0.4 v yardstick 1.3.2

-- Conflicts --- tidymodels_conflicts() --
x purrr::discard() masks scales::discard()
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
x recipes::step() masks stats::step()

9.1 Build a regression model

As described in more detail in Chapter 8, we first build a model for the mtcars dataset.

prepare
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

fit model
formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

model <- linear_reg() %>%
set_engine("lm") %>%
fit(formula, data = data)

9.2 Calculate performance metrics

The yardstick package contains 16 metrics for regression models. The metrics() function
calculates the most important metrics for a given model.

121

metrics(augment(model, data), truth = mpg, estimate = .pred)

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 2.15
2 rsq standard 0.869
3 mae standard 1.72

We use the parsnip::augment function to add the predictions to the original dataset. For a
regression model, this adds prediction (.pred) and residuals (.resid).1 The truth argument
specifies the name of the column with the true values, here mpg. The estimate argument
specifies the name of the column with the predicted values, here .pred.

The metrics() function calculates the following metrics:

• rmse: root mean squared error (RMSE)
• rsq: R-squared (R2)
• mae: mean absolute error (MAE)

This should be enough for most purposes. If you want to calculate other metrics, you can
use the yardstick::metric_set() function. This function takes a list of metrics and returns
a function that calculates all metrics in the list. For example, if your dataset has a few
outlier values, it can be useful to look at robust metrics like MAE. Here, we combine mae and
huber_loss into a custom metric set.

robust_metric <- metric_set(mae, huber_loss)
robust_metric(augment(model, data), truth = mpg, estimate = .pred)

A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 mae standard 1.72
2 huber_loss standard 1.30

LIGHTBULB Todo

• Go to the yardstick website at https://yardstick.tidymodels.org/ and get an
overview of the various metrics.

1

122

INFO Further information

• https://yardstick.tidymodels.org/ is the documentation for the yardstick package.
• https://yardstick.tidymodels.org/reference/index.html lists all the different metrics

that are available in yardstick.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/model_workflow_validate.png")
library(tidymodels)
prepare
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

fit model
formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

model <- linear_reg() %>%
set_engine("lm") %>%
fit(formula, data = data)

metrics(augment(model, data), truth = mpg, estimate = .pred)
robust_metric <- metric_set(mae, huber_loss)
robust_metric(augment(model, data), truth = mpg, estimate = .pred)

123

Part IV

Classification models

124

10 Training classification models using
tidymodels

Regression models predict a quantitative, continuous numerical outcome. In contrast, clas-
sification models predict a qualitative categorical outcome variable from a set of predictor
variables. Like regression models, classification models are defined with the functions from the
parsnip package.

Figure 10.1: Classification model definition using parsnip

In this section, we will learn how to train a logistic regression model using the tidymodels
package. Despite its name, logistic regression is a classification model.

First, load all the packages we will need.

library(tidyverse)
library(tidymodels)

125

10.1 The UniversalBank dataset

Let’s look at the UniversalBank dataset. It is available at https://gedeck.github.io/DS-
6030/datasets/UniversalBank.csv.gz. We download it using readr::read_csv.

file <-
"https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"

data <- read_csv(file)

Rows: 5000 Columns: 14
-- Column specification --
Delimiter: ","
dbl (14): ID, Age, Experience, Income, ZIP Code, Family, CCAvg, Education, M...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

head(data)

A tibble: 6 x 14
ID Age Experience Income `ZIP Code` Family CCAvg Education Mortgage

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 25 1 49 91107 4 1.6 1 0
2 2 45 19 34 90089 3 1.5 1 0
3 3 39 15 11 94720 1 1 1 0
4 4 35 9 100 94112 1 2.7 2 0
5 5 35 8 45 91330 4 1 2 0
6 6 37 13 29 92121 4 0.4 2 155
i 5 more variables: `Personal Loan` <dbl>, `Securities Account` <dbl>,
`CD Account` <dbl>, Online <dbl>, CreditCard <dbl>

The synthetic dataset contains information about 5000 customers of a bank. The bank wants to
know which customers are likely to accept a personal loan. The dataset contains 14 variables.
The variable Personal Loan is the outcome variable. It is a binary variable that indicates
whether the customer accepted the personal loan. The remaining variables are the predictor
variables. Details can be found at https://gedeck.github.io/DS-6030/datasets/UniversalBank.
html.

Next we need to preprocess the dataset:

126

https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz
https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz
https://gedeck.github.io/DS-6030/datasets/UniversalBank.html
https://gedeck.github.io/DS-6030/datasets/UniversalBank.html

data <- data %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),
levels = c(1, 0)),

Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)
str(data) # compact representation of the data

tibble [5,000 x 12] (S3: tbl_df/tbl/data.frame)
$ Age : num [1:5000] 25 45 39 35 35 37 53 50 35 34 ...
$ Experience : num [1:5000] 1 19 15 9 8 13 27 24 10 9 ...
$ Income : num [1:5000] 49 34 11 100 45 29 72 22 81 180 ...
$ Family : num [1:5000] 4 3 1 1 4 4 2 1 3 1 ...
$ CCAvg : num [1:5000] 1.6 1.5 1 2.7 1 0.4 1.5 0.3 0.6 8.9 ...
$ Education : Factor w/ 3 levels "Undergrad","Graduate",..: 1 1 1 2 2 2 2 3 2 3 ...
$ Mortgage : num [1:5000] 0 0 0 0 0 155 0 0 104 0 ...
$ Personal.Loan : Factor w/ 2 levels "Yes","No": 2 2 2 2 2 2 2 2 2 1 ...
$ Securities.Account: num [1:5000] 1 1 0 0 0 0 0 0 0 0 ...
$ CD.Account : num [1:5000] 0 0 0 0 0 0 0 0 0 0 ...
$ Online : num [1:5000] 0 0 0 0 0 1 1 0 1 0 ...
$ CreditCard : num [1:5000] 0 0 0 0 1 0 0 1 0 0 ...

The preprocessing consists of the following steps. First, we remove two columns. ID is customer
specific and ZIP Code is a categorical variable with too many categories. Second, we rename
the columns to remove the spaces. This makes it easier to work with the data. Third, we
convert the Personal.Loan and Education variables to factors. In principle, one could convert
the variables Securities.Account, CD.Account, Online, and CreditCard to factors as well.
However, as they have only two levels, we will leave them as numbers.1

LIGHTBULB Useful to know

The outcome variable Personal.Loan is converted to a factor despite what we just said.
This is important! It tells tidymodels that we want to train a classification model. If we

1You could convert them to make it easier to interpret the model coefficients.

127

would leave it as a number, the package would assume that we want to train a regression
model. Several other packages use the same convention.
An additional advantage is that predictions will be more informative leading to easier to
read predictions. In our case, the predictions will be Yes or No instead of 1 or 0.

Let’s also create a new dataset with new customers. We will use this dataset to predict whether
the customer will accept a personal loan.

new_customer <- tibble(Age = 40, Experience = 10, Income = 84,
Family = 2, CCAvg = 2, Education = 2, Mortgage = 0,
Securities.Account = 0, CD.Account = 0, Online = 1,
CreditCard = 1) %>%
mutate(Education = factor(Education,

labels = c("Undergrad", "Graduate", "Advanced"),
levels = c(1, 2, 3)))

new_customer

A tibble: 1 x 11
Age Experience Income Family CCAvg Education Mortgage Securities.Account

<dbl> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl>
1 40 10 84 2 2 Graduate 0 0
i 3 more variables: CD.Account <dbl>, Online <dbl>, CreditCard <dbl>

Note that we need to convert the Education variable to a factor. Otherwise, the prediction
will fail.

10.2 Tidymodels: predicting Personal.Loan in the UniversalBank
dataset

Defining and training the classification models in tidymodels is very similar to training regres-
sion models.

formula <- Personal.Loan ~ Age + Experience + Income + Family +
CCAvg + Education + Mortgage + Securities.Account + CD.Account +
Online + CreditCard

model <- logistic_reg() %>%
set_engine("glm") %>%
fit(formula, data = data)

128

We will use the logistic_reg() function to define a logistic regression model. The
set_engine() function defines the actual model. Here it will be the glm model from base-R.
We could also use set_engine("glmnet") to use the model from the glmnet package. The
fit() function finally trains the model.

The result is an object of class logistic_reg. Printing the model gives details about the
model.

model

parsnip model object

Call: stats::glm(formula = Personal.Loan ~ Age + Experience + Income +
Family + CCAvg + Education + Mortgage + Securities.Account +
CD.Account + Online + CreditCard, family = stats::binomial,
data = data)

Coefficients:
(Intercept) Age Experience Income
12.3105489 0.0359174 -0.0450379 -0.0601830

Family CCAvg EducationGraduate EducationAdvanced
-0.6181693 -0.1633508 -3.9653781 -4.0640537
Mortgage Securities.Account CD.Account Online

-0.0007105 0.8701362 -3.8389223 0.7605294
CreditCard
1.0382002

Degrees of Freedom: 4999 Total (i.e. Null); 4987 Residual
Null Deviance: 3162
Residual Deviance: 1172 AIC: 1198

As we learned for the linear regression model, we can access the actual model using
model$fit.

model$fit

Call: stats::glm(formula = Personal.Loan ~ Age + Experience + Income +
Family + CCAvg + Education + Mortgage + Securities.Account +
CD.Account + Online + CreditCard, family = stats::binomial,
data = data)

129

Coefficients:
(Intercept) Age Experience Income
12.3105489 0.0359174 -0.0450379 -0.0601830

Family CCAvg EducationGraduate EducationAdvanced
-0.6181693 -0.1633508 -3.9653781 -4.0640537
Mortgage Securities.Account CD.Account Online

-0.0007105 0.8701362 -3.8389223 0.7605294
CreditCard
1.0382002

Degrees of Freedom: 4999 Total (i.e. Null); 4987 Residual
Null Deviance: 3162
Residual Deviance: 1172 AIC: 1198

Use the predict() function to predict the outcome for the new customer.

predict(model, new_data = new_customer)

A tibble: 1 x 1
.pred_class
<fct>

1 No

The model predicts that the customer will not accept the loan offer. The predicted class is in
the .pred_class column. Classification models can also return a probability for the prediction.
Use type="prob" with the predict function.

predict(model, new_data = new_customer, type = "prob")

A tibble: 1 x 2
.pred_Yes .pred_No

<dbl> <dbl>
1 0.0109 0.989

Our new customer has a very high probabily to not accept the offer; .pred_No = 0.989. The
probability for the other Yes class is .pred_Yes = 0.011.

130

LIGHTBULB Useful to know

The parsnip::augment function is shortcut to predict a dataset and return a new tibble
that includes the predicted values.

augment(model, new_data = new_customer)

A tibble: 1 x 14
.pred_class .pred_Yes .pred_No Age Experience Income Family CCAvg Education
<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>

1 No 0.0109 0.989 40 10 84 2 2 Graduate
i 5 more variables: Mortgage <dbl>, Securities.Account <dbl>,
CD.Account <dbl>, Online <dbl>, CreditCard <dbl>

The augment function returns a tibble that contains all the columns from the original
dataset and adds the columns .pred_class and .pred_No and .pred_Yes.

10.3 Visualizing the overall model performance using a ROC curve

There are various ways of analyzing the performance of a classification model. We will discuss
this in more detail in Chapter 11. Here, we will create a ROC curve to visualize the performance
of our model. A ROC curve can tell you how well the model can distinguish between the two
classes.

Figure 10.2 demonstrates how the class separation, the ROC curve and the AUC are related.
The density plots in the top row show how the predicted probabilities are distributed for two
classes. On the left, we have a model that hardly separates the two classes. On the right,
the model separates the two classes very well. The corresponding ROC curves are shown in
the second row. The ROC curves are the solid lines. The dashed line is the ROC curve for a
random model. For the weakest model, the ROC curve is close to the random model. For the
strongest model, the ROC curve gets closer and closer to the ideal model (grey lines). The
AUC is the area under the ROC curve. The AUC for the weakest model is close to 0.5, which
is the same as for the random model. The AUC for the strongest model is close to 1, which is
the best possible value.

Let’s see how it looks like for our model. We will use yardstick::roc_curve to calculate the
ROC curve.

augment(model, new_data = data) %>%
roc_curve(Personal.Loan, .pred_Yes, event_level = "first") %>%
autoplot()

131

Figure 10.2: Relationship between class separation, ROC curves and AUC

132

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Figure 10.3: ROC curve of the Universal Bank classification model

The augment() function adds the predicted class probabilities to the original dataset. This
is passed into the yardstick::roc_curve function. We need to specify the actual outcome
variable (Personal.Loan) and the predicted probability for the event that we are interested
(.pred_Yes). The event_level argument specifies which class is the event. In our case, we
are interested in the event that the customer accepts the loan. This is the first level, hence
event_level="first". The roc_curve() function returns a tibble with the false positive rate
(FPR) and the true positive rate (TPR). The autoplot() function creates the ROC curve as
shown in Figure 10.3, but you could also use ggplot2 to create your own plot.

INFO Further information

The tidymodels package parsnip is the package that is responsible to define and fit
models. You find detailed information about each of the model types, the specific engines
and their options in the documentation.

• https://parsnip.tidymodels.org/ is the documentation for the parsnip package.
• https://parsnip.tidymodels.org/reference/ lists all the different model types that

are available in parsnip
• https://parsnip.tidymodels.org/reference/logistic_reg.html is the documentation

for the logistic_reg() function. Here, you find a list of all the engines that
can be used with logistic_reg().

• https://parsnip.tidymodels.org/reference/details_logistic_reg_glm.html is the
documentation for the glm engine. These specific pages will give you more details
about the different options that are available for each model.

133

https://parsnip.tidymodels.org/
https://parsnip.tidymodels.org/reference/
https://parsnip.tidymodels.org/reference/logistic_reg.html
https://parsnip.tidymodels.org/reference/details_logistic_reg_glm.html

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/model_workflow_parsnip.png")
library(tidyverse)
library(tidymodels)
file <-
"https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"

data <- read_csv(file)
head(data)
data <- data %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),
levels = c(1, 0)),

Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)
str(data) # compact representation of the data
new_customer <- tibble(Age = 40, Experience = 10, Income = 84,
Family = 2, CCAvg = 2, Education = 2, Mortgage = 0,
Securities.Account = 0, CD.Account = 0, Online = 1,
CreditCard = 1) %>%
mutate(Education = factor(Education,

labels = c("Undergrad", "Graduate", "Advanced"),
levels = c(1, 2, 3)))

new_customer
formula <- Personal.Loan ~ Age + Experience + Income + Family +
CCAvg + Education + Mortgage + Securities.Account + CD.Account +
Online + CreditCard

model <- logistic_reg() %>%
set_engine("glm") %>%
fit(formula, data = data)

134

model
model$fit
predict(model, new_data = new_customer)
predict(model, new_data = new_customer, type = "prob")
augment(model, new_data = new_customer)
knitr::include_graphics("images/roc-auc-class-separation.png")
augment(model, new_data = data) %>%
roc_curve(Personal.Loan, .pred_Yes, event_level = "first") %>%
autoplot()

135

11 Measuring performance of classification
models

In Chapter 9, we learned how to use the yardstick package to measure the performance of
a regression model. This package contains also a large collection of performance metrics for
classification models.

Figure 11.1: Measuring classification performance using yardstick

We can divide the classification metrics into two types. The first type requires a hard, class
prediction, these are called classification metrics in yardstick. The second type are metrics
that consider the relationship between predicted probabilities and actual class. In yardstick,
these are referred to as class probability metrics. Finally, yardstick provides a number of
curves (e.g. ROC curves) that can be used to visualize the performance of a classification
model.

In this chapter, we will also cover threshold selection using the probably package (Sec-
tion 11.1.2).

136

Let’s demonstrate various measures using the logistic regression classification from the previous
Chapter 10.

library(tidyverse)
library(tidymodels)
library(yardstick)
library(probably) # for exploring thresholds
library(patchwork) # for combining plots

file <-
"https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"

data <- read_csv(file)
data <- data %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),
levels = c(1, 0)),

Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)
formula <- Personal.Loan ~ Income + Family + CCAvg + Education +
Mortgage + Securities.Account + CD.Account + Online + CreditCard

model <- logistic_reg() %>%
set_engine("glm") %>%
fit(formula, data = data)

data <- augment(model, new_data = data)

11.1 Classification metrics

The basis of classification metrics is the confusion matrix. The confusion matrix is a table
that shows the number of correct and incorrect predictions made by a classification model.
The confusion matrix is constructed as follows using yardstick::conf_mat:

cm <- data %>%
conf_mat(truth = Personal.Loan, estimate = .pred_class)

cm

137

Truth
Prediction Yes No

Yes 323 49
No 157 4471

Here, the confusion matrix lists the predicted class in the rows and the actual class in the
column. The diagonal elements are the correct predictions. The off-diagonal elements are the
number of incorrect predictions. For example, we can see that the model predicted 49 Yes
when the actual class was No.

The yardstick package provides an autoplot function for the confusion matrix. The type
argument specifies the type of plot. The mosaic type gives a mosaic plot where areas represent
the number of data points. The heatmap type is a heatmap. Figure 11.2 shows both types
side by side.

g1 <- autoplot(cm, type = "mosaic")
g2 <- autoplot(cm, type = "heatmap")
g1 + g2

Yes

No

Yes No
Truth

P
re

di
ct

io
n

323

157

49

4471No

Yes

Yes No
Truth

P
re

di
ct

io
n

Figure 11.2: Visual representation of the confusion matrix using autoplot

LIGHTBULB Useful to know

The definition of the confusion matrix is not standardized. There are other packages that
swap the predicted and actual classes in the matrix. Always check which convention is
used for the representation of the confusion matrix.

Using the confusion matrix, we can calculate various classification metrics. For example, the
accuracy is the proportion of correct predictions.

138

(cm$table[1, 1] + cm$table[2, 2]) / sum(cm$table)

[1] 0.9588

Accuracy is calculated as the sum of the diagonal divided by the total number of cases. Here,
we get an accuracy of 0.9588. yardstick provides a large variety of metrics. The following
calculates the accuracy using yardstick::accuracy:

yardstick::accuracy(data, truth = Personal.Loan,
estimate = .pred_class)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.959

Other metrics are:

• sensitivity: Sensitivity
• specificity: Specificity
• recall: Recall
• precision: Precision
• mcc: Matthews correlation coefficient
• j_index: J-index
• f_meas: F-measure
• kap: Kappa
• ppv: Positive predictive value
• npv: Negative predictive value
• bal_accuracy: Balanced accuracy
• detection_prevalence: Detection prevalence

The function yardstick::metrics calculates two commonly used metrics accuracy and
kappa:

yardstick::metrics(data, Personal.Loan, .pred_class)

A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.959
2 kap binary 0.736

139

You can also define your own combination of metrics and use that to calculate multiple metrics
at once.

my_metrics <- metric_set(sens, spec, j_index)
my_metrics(data, truth = Personal.Loan, estimate = .pred_class)

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 sens binary 0.673
2 spec binary 0.989
3 j_index binary 0.662

LIGHTBULB Useful to know

While you can rely on the default value picked by yardstick for the event of interest, it
is good practice to specify the event of interest.

11.1.1 Specifying the event of interest

Metrics like accuracy, kap, or j_index treat both outcome classes equally important. How-
ever, in many cases, we are interested in the performance of the model for one of the classes. For
example, in the case of a medical test, we are interested in the performance of the test for the
positive class, i.e. the class that indicates the presence of a disease. Metrics like sensitivity
or specificity have this dependency.

my_metrics(data, truth = Personal.Loan, estimate = .pred_class)

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 sens binary 0.673
2 spec binary 0.989
3 j_index binary 0.662

Considering the confusion matrix,

Truth
Prediction Yes No

Yes 323 49
No 157 4471

140

we can see that sensitivity, the true positive rate, was calculated for the Yes class;
323/(323 + 157) = 0.6729167. specificity, the true negative rate, was calculated for the No
class; 4471/(49 + 4471) = 0.6729167. By default, yardstick assumes the that first level is
the event of interest. In our example, the first level is Yes.

However, if we are interested in the No class, we can change this by specifying the event of
interest using the event_level argument.

my_metrics(data, truth = Personal.Loan, estimate = .pred_class,
event_level = "second")

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 sens binary 0.989
2 spec binary 0.673
3 j_index binary 0.662

11.1.2 Thresholds

In order to predict a class, we need to map the proability (or score) 𝑝 calculated by a classifi-
cation method to a class by applying a threshold.

class = {
Yes if 𝑝 > threshold
No otherwise

(11.1)

The classification metrics are calculated using a threshold of 0.5. Using a different threshold,
the confusion matrix and therefore all derived metrics change. Figure 11.3 demonstrates this
using our example.

The two density plots show the distribution of the predicted probabilities for the two classes;
blue for the Yes class and red for the No class. The vertical lines indicate the thresholds. The
confusion matrix shows the number of cases predicted as Yes and No. Accuracy, sensitivity,
and specificity are calculated for the three thresholds.

performance <- probably::threshold_perf(data, Personal.Loan,
.pred_Yes, c(0.1, 0.5, 0.9), event_level = "first",
metrics = yardstick::metric_set(

yardstick::accuracy,
yardstick::specificity,
yardstick::sensitivity,

141

Figure 11.3: Relationship between threshold, confusion matrix, and various performance met-
rics

))
perf_1 <- performance %>% filter(.threshold == 0.1)
perf_5 <- performance %>% filter(.threshold == 0.5)
perf_9 <- performance %>% filter(.threshold == 0.9)

At the lowest threshold, 0.1, the model predicts most of the Yes cases as Yes, leading to the
highest sensitivity of 0.8917. Increasing the threshold reduces the sensitivity, as more and
more of the Yes cases are predicted as No. At the highest threshold, 0.9, the sensitivity is
0.4229. The specificity behaves in the opposite way. At the lowest threshold, the specificity is
0.9013. Increasing the threshold, more and more of the incorrectly classified No cases are now
correctly predicted. At the highest threshold, the specificity is 0.9996.

Selecting the best threshold is a trade-off between sensitivity and specificity. The probably
package provides a function to explore the relationship between thresholds and performance
metrics. The function probably::threshold_perf calculates the performance metrics for a
range of thresholds. The function returns a tibble with the threshold, the performance metric,
and the estimate. We can use this tibble to plot the relationship between thresholds and
performance metrics and determine a threshold based on a criteria of our choice. Figure 11.4
shows the relationship between thresholds and accuracy, sensitivity, and specificity.

performance_1 <- probably::threshold_perf(data, Personal.Loan,
.pred_Yes, thresholds = seq(0.05, 0.95, 0.01),
event_level = "first",
metrics = metric_set(j_index, specificity, sensitivity))

performance_2 <- probably::threshold_perf(data, Personal.Loan,
.pred_Yes, thresholds = seq(0.05, 0.95, 0.01),
event_level = "first",

142

metrics = metric_set(accuracy, kap, bal_accuracy, f_meas))
max_j_index <- performance_1 %>%
filter(.metric == "j_index") %>%
filter(.estimate == max(.estimate))

max_performance <- performance_2 %>%
arrange(desc(.threshold)) %>%
group_by(.metric) %>%
filter(.estimate == max(.estimate)) %>%
filter(row_number() == 1)

g1 <- ggplot(performance_1,
aes(x = .threshold, y = .estimate, color = .metric,

linetype = .metric)) +
geom_line() +
geom_vline(data = max_j_index,

aes(xintercept = .threshold, color = .metric)) +
scale_x_continuous(breaks = seq(0, 1, 0.1)) +
xlab("Threshold") + ylab("Metric value") +
theme(legend.position = "inside",

legend.position.inside = c(0.85, 0.75))
g2 <- ggplot(performance_2,
aes(x = .threshold, y = .estimate, color = .metric,

linetype = .metric)) +
geom_line() +
geom_vline(data = max_performance,

aes(xintercept = .threshold, color = .metric)) +
scale_x_continuous(breaks = seq(0, 1, 0.1)) +
xlab("Threshold") + ylab("Metric value") +
theme(legend.position = "inside",

legend.position.inside = c(0.85, 0.75))
g1 + g2

143

0.5

0.7

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

M
et

ric
 v

al
ue

.metric

j_index

sensitivity

specificity

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

M
et

ric
 v

al
ue

.metric

accuracy

bal_accuracy

f_meas

kap

Figure 11.4: Relationship between threshold and sensitivity, specificity, and j-index

The probably::threshold_perf function takes a tibble and the names of the columns that
contain the truth and the predicted probabilities. The thresholds argument specifies the
range of thresholds to be explored. The metrics argument specifies the metrics to be calculated
for each threshold. If you event of interest is not the first level, you can specify this using the
event_level argument. Evaluating the performance metrics is very fast, so you can explore
a large number of thresholds. Here, we explored 91 thresholds between 0.05 and 0.95.

The graphs clearly show that depending on the selected metric, the optimal threshold is dif-
ferent. The first graph shows the relationship between thresholds and the J-index, sensitivity,
and specificity. The second graph shows the relationship between thresholds and accuracy,
kappa, and balanced accuracy. The vertical lines indicate the optimal threshold for each met-
ric. The optimal threshold for the J-index is 0.12. The optimal threshold for accuracy, kappa,
and balanced accuracy is 0.55, 0.33, 0.33, 0.12.

LIGHTBULB Useful to know

This section has shown you how to calculate classification metrics as a function of the
threshold. In any project, you will need to decide which of all possible metrics is the most
appropriate for your problem. Sometimes you want to be more risk averse and prefer a
higher sensitivity or fewer false positives. Sometimes you can be more risk taking and
prefer a higher specificity or fewer false negatives.

11.2 Class probability metrics

In the previous Chapter 10, we encountered AUC, the area under the ROC curve. This is
an example of a class probability metric. The ROC curve shows the relationship between

144

sensitivity and specificity for all possible thresholds.

A ROC curve can be constructed by calculating sensitivity and specificity at different thresh-
olds and then plotting the relationship between sensitivity and specificity. Figure 11.5 demon-
strates the construction of the ROC curve.

performance <- probably::threshold_perf(data, Personal.Loan,
.pred_Yes, seq(0.00, 1.0, 0.1), event_level = "first")

metrics <- pivot_wider(performance, id_cols = .threshold,
names_from = .metric, values_from = .estimate)

roc_curve(data, Personal.Loan, .pred_Yes, event_level = "first") %>%
autoplot() +
geom_point(data = metrics,

aes(x = 1 - specificity, y = sensitivity),
color = "red") +

geom_text(data = metrics,
aes(x = 1 - specificity, y = sensitivity, label = .threshold),
nudge_x = 0.05, check_overlap = TRUE)

145

0

0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

10.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Figure 11.5: Construction of ROC curve

We first use threshold_perf to calculate the sensitivity and specificity for a range of thresh-
olds. We then use pivot_wider to convert the tibble into a wide format. In addition, we use
the roc_curve function from yardstick to calculate the ROC curve and plot it first. The
graph then overlays the results from the threshold_perf calculation as red points.

LIGHTBULB Useful to know

In reality, calculating the ROC curves is a bit more complicated. In particular, care
must be taken on how to resolve ties. The roc_curve function from yardstick uses the
trapezoidal rule to calculate the area under the curve. For more information on how and
why ties are important see (Muschelli 2020).

The AUC of the ROC curve is a useful estimate of how well classes are separated by the model.
Figure 11.6 demonstrates the relationship between class separation, ROC curves, and AUC.
The top graphs show the distribution of the predicted probabilities for the two classes. The

146

bottom graphs show the corresponding ROC curves. Increasing the class separation, leads to a
ROC curve that is closer to the ideal ROC curve and as a consequence, the AUC increases.

Figure 11.6: Relationship between class separation, ROC curves and AUC

Figure 11.7 gives a guideline on how to interpret the AUC.

Let’s calculate the AUC for our example.

roc_auc(data, Personal.Loan, .pred_Yes, event_level = "first")

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 roc_auc binary 0.962

The roc_auc function requires the truth and the predicted probabilities. The event_level
argument specifies the event of interest. In our case, the AUC is 0.962. We have an excellent
model.

Other class probability metrics are:

• pr_auc: Area under the precision recall curve

147

Figure 11.7: Interpretation of AUC (Trifonova, Lokhov, and Archakov 2014)

• average_precision: Area under the precision recall curve (variation of pr_auc)
• gain_capture: Gain capture
• mn_log_loss: Mean log loss for multinomial data
• classification_cost: Costs function for poor classification
• brier_class: Brier score for classification models

prob_metrics <- metric_set(
roc_auc, pr_auc, average_precision, gain_capture,
mn_log_loss, classification_cost, brier_class

)
prob_metrics(data, Personal.Loan, .pred_Yes)

A tibble: 7 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 roc_auc binary 0.962
2 pr_auc binary 0.851
3 average_precision binary 0.851
4 gain_capture binary 0.924
5 mn_log_loss binary 0.117
6 classification_cost binary 0.0652
7 brier_class binary 0.0317

148

11.3 Additional curves

In addition to the ROC curves, yardstick supports additional curves. Figure 11.8 shows all
curves supported by yardstick.

g1 <- roc_curve(data, Personal.Loan, .pred_Yes,
event_level = "first") %>%
autoplot() + labs(title = "ROC curve")

g2 <- gain_curve(data, Personal.Loan, .pred_Yes,
event_level = "first") %>%
autoplot() + labs(title = "Gains curve")

g3 <- pr_curve(data, Personal.Loan, .pred_Yes,
event_level = "first") %>%
autoplot() + labs(title = "Precision/recall")

g4 <- lift_curve(data, Personal.Loan, .pred_Yes,
event_level = "first") %>%
autoplot() + labs(title = "Lift curve")

(g1 + g2) / (g3 + g4)

0.00

0.25

0.50

0.75

1.00

se
ns

iti
vi

ty

0.000.250.500.751.00
1 − specificity

ROC curve

0

25

50

75

100

0 25 50 75 100
% Tested

%
 F

ou
nd

Gains curve

0.00

0.25

0.50

0.75

1.00

pr
ec

is
io

n

0.000.250.500.751.00
recall

Precision/recall

2.5

5.0

7.5

10.0

0 25 50 75 100
% Tested

Li
ft

Lift curve

Figure 11.8: All curves supported by yardstick

149

The precision/recall curve plots precision against recall.

The gains curve is similar to the ROC curve, but instead of plotting sensitivity against speci-
ficity, it plots the cumulative number of true positives against the cumulative number of false
positives. A gains curve focuses on what happens if you use the model to select a subset of the
data based on the predicted probability. In our example, approaching 10% of the customers
based on the predicted Yes score, will give us about 75% of the customers that would get a
loan. A variation of this curve type incorporates cost. Figure 11.9 shows an example. The
benefit of a correct classification is offset by the cost of missclassifications. Looking a the curve
from left to right, we see that initially, the benefit of correct classifications outweighs the cost
of missclassifications. However, at some point, the cost of missclassifications outweighs the
benefit of correct classifications and ultimately, the cost leads to a negative outcome. The
optimal point is where the curve is the highest.

Figure 11.9: Cumulative gains curve incorporating costs (Shmueli et al. 2023)

The lift curve is another way of looking at selecting a subset based on the predicted score/prob-
ability. The curve tells you how much better (or worse) the model performs compared to
random. In our example, we see that the lift for first 10% of the customers is between 7 and
10. This means that the model is 7 to 10 times better than random.

LIGHTBULB Todo

Look through the manual for yardstick to get an overview of all available classification
metrics.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/model_workflow_postprocessing.png")
library(tidyverse)

150

https://yardstick.tidymodels.org/

library(tidymodels)
library(yardstick)
library(probably) # for exploring thresholds
library(patchwork) # for combining plots
file <-
"https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"

data <- read_csv(file)
data <- data %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),
levels = c(1, 0)),

Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)
formula <- Personal.Loan ~ Income + Family + CCAvg + Education +
Mortgage + Securities.Account + CD.Account + Online + CreditCard

model <- logistic_reg() %>%
set_engine("glm") %>%
fit(formula, data = data)

data <- augment(model, new_data = data)
cm <- data %>%
conf_mat(truth = Personal.Loan, estimate = .pred_class)

cm
g1 <- autoplot(cm, type = "mosaic")
g2 <- autoplot(cm, type = "heatmap")
g1 + g2
(cm$table[1, 1] + cm$table[2, 2]) / sum(cm$table)
yardstick::accuracy(data, truth = Personal.Loan,
estimate = .pred_class)

yardstick::metrics(data, Personal.Loan, .pred_class)
my_metrics <- metric_set(sens, spec, j_index)
my_metrics(data, truth = Personal.Loan, estimate = .pred_class)
my_metrics(data, truth = Personal.Loan, estimate = .pred_class)
conf_mat(data, truth = Personal.Loan, estimate = .pred_class)
my_metrics(data, truth = Personal.Loan, estimate = .pred_class,
event_level = "second")

151

knitr::include_graphics("images/threshold-accuracy.png")
performance <- probably::threshold_perf(data, Personal.Loan,
.pred_Yes, c(0.1, 0.5, 0.9), event_level = "first",
metrics = yardstick::metric_set(

yardstick::accuracy,
yardstick::specificity,
yardstick::sensitivity,

))
perf_1 <- performance %>% filter(.threshold == 0.1)
perf_5 <- performance %>% filter(.threshold == 0.5)
perf_9 <- performance %>% filter(.threshold == 0.9)
performance_1 <- probably::threshold_perf(data, Personal.Loan,
.pred_Yes, thresholds = seq(0.05, 0.95, 0.01),
event_level = "first",
metrics = metric_set(j_index, specificity, sensitivity))

performance_2 <- probably::threshold_perf(data, Personal.Loan,
.pred_Yes, thresholds = seq(0.05, 0.95, 0.01),
event_level = "first",
metrics = metric_set(accuracy, kap, bal_accuracy, f_meas))

max_j_index <- performance_1 %>%
filter(.metric == "j_index") %>%
filter(.estimate == max(.estimate))

max_performance <- performance_2 %>%
arrange(desc(.threshold)) %>%
group_by(.metric) %>%
filter(.estimate == max(.estimate)) %>%
filter(row_number() == 1)

g1 <- ggplot(performance_1,
aes(x = .threshold, y = .estimate, color = .metric,

linetype = .metric)) +
geom_line() +
geom_vline(data = max_j_index,

aes(xintercept = .threshold, color = .metric)) +
scale_x_continuous(breaks = seq(0, 1, 0.1)) +
xlab("Threshold") + ylab("Metric value") +
theme(legend.position = "inside",

legend.position.inside = c(0.85, 0.75))
g2 <- ggplot(performance_2,
aes(x = .threshold, y = .estimate, color = .metric,

linetype = .metric)) +
geom_line() +

152

geom_vline(data = max_performance,
aes(xintercept = .threshold, color = .metric)) +

scale_x_continuous(breaks = seq(0, 1, 0.1)) +
xlab("Threshold") + ylab("Metric value") +
theme(legend.position = "inside",

legend.position.inside = c(0.85, 0.75))
g1 + g2
performance <- probably::threshold_perf(data, Personal.Loan,
.pred_Yes, seq(0.00, 1.0, 0.1), event_level = "first")

metrics <- pivot_wider(performance, id_cols = .threshold,
names_from = .metric, values_from = .estimate)

roc_curve(data, Personal.Loan, .pred_Yes, event_level = "first") %>%
autoplot() +
geom_point(data = metrics,

aes(x = 1 - specificity, y = sensitivity),
color = "red") +

geom_text(data = metrics,
aes(x = 1 - specificity, y = sensitivity, label = .threshold),
nudge_x = 0.05, check_overlap = TRUE)

knitr::include_graphics("images/roc-auc-class-separation.png")
knitr::include_graphics("images/AUC-ROC.png")
roc_auc(data, Personal.Loan, .pred_Yes, event_level = "first")
prob_metrics <- metric_set(
roc_auc, pr_auc, average_precision, gain_capture,
mn_log_loss, classification_cost, brier_class

)
prob_metrics(data, Personal.Loan, .pred_Yes)
g1 <- roc_curve(data, Personal.Loan, .pred_Yes,
event_level = "first") %>%
autoplot() + labs(title = "ROC curve")

g2 <- gain_curve(data, Personal.Loan, .pred_Yes,
event_level = "first") %>%
autoplot() + labs(title = "Gains curve")

g3 <- pr_curve(data, Personal.Loan, .pred_Yes,
event_level = "first") %>%
autoplot() + labs(title = "Precision/recall")

g4 <- lift_curve(data, Personal.Loan, .pred_Yes,
event_level = "first") %>%
autoplot() + labs(title = "Lift curve")

(g1 + g2) / (g3 + g4)
knitr::include_graphics("images/c5f012.png")

153

Part V

Validating and tuning models

154

12 Sampling from a dataset

Sampling from a dataset is at the core of all validation and tuning methods. In most case, the
sampling is done using a random process. There are two ways of sampling from a dataset:

• Sampling without replacement: each observation can be sampled only once. We use
this approach for creating a holdout set and for cross-validation.

• Sampling with replacement: the same observation can be sampled more than once. This
approach to sampling is at the core of the bootstrap method.

It can also be important to consider the structure of the dataset when sampling. With struc-
ture, we mean the distribution of the data with respect to the predictors or the data. This
type of sampling is called stratified sampling. With stratified sampling, you can make sure
that the distribution of the data is preserved in the sample. For example, if you have a binary
outcome, you can make sure that the sample contains the same proportion of positive and
negative outcomes as the original dataset. For continuous outcomes, it would mean that the
sample has the same distribution of the outcome as the original dataset.

You can see the effect of stratified sampling for a continuous variable in Figure 12.1. The
two panels shows the distribution of the continuous variable for a random sample (left) and a
stratified sample (right). The original distribution is shown in red and the distribution of the
samples in grey. We can clearly see that stratified sampling preserves the distribution of the
data better.

LIGHTBULB Useful to know

Sampling, like all calculations that depend on randomness, uses a random number gener-
ator which means that repeated execution of the same code will lead to different results.
You can make your calculations reproducible by setting a seed using the set.seed()
function. The seed can be any number. The same seed will always produce the same
random numbers. In general, it is good practice to set a seed to make sure that the
results do not change between runs. You will see that we use the set.seed() function
in the examples below.

Tidymodels provides a wide variety of sampling methods in the rsample package. The sampling
methods are used to create training, validation, and holdout sets for model building and
evaluation. Figure 12.2 shows where sampling fits into the model building workflow.

155

Figure 12.1: Effect of using stratified sampling on a continuous variable

Figure 12.2: Sampling for model validation using rsample

156

12.1 Sampling in statistical modeling

In statistical modeling, we use sampling to create various subsets of the data. Common
scenarios are:

• Split the data randomly into training and holdout set; use the training set to fit the
model and the holdout set to evaluate the model. This approach can be taken if your
model doesn’t equire tuning. Using the holdout set to evaluate the model is a way to
get an unbiased estimate of the model performance. It is good practice to repeat this
process several times to get a more stable estimate of the model performance. This is
called repeated holdout (see Figure 12.3)

Figure 12.3: Repeated holdout: splitting the dataset randomly into 80% training (blue) and
20% holdout (orange) sets; process is repeated five times

• Split the data randomly into training, validation, and holdout set; use the training set
to fit various models, select a specific model using the performance on the validation set,
and use the holdout set to evaluate the final model. This approach can be taken if you
have sufficient data and training the model is costly. See Figure 12.4 for an illustration
of this approach.

• The previous scenario relies on a single training/validation split for comparing the per-
formance of different models. A more robust approach is to use cross-validation. In
cross-validation, the data is split systematically into 𝑘 folds. Each fold is used as a val-
idation set and the model is trained on the remaining 𝑘 − 1 folds. In total, we train 𝑘
models. Each of the folds is used as a validation set once. The performance of the model
is then averaged over the 𝑘 folds. You repeat this 𝑘-fold cross validation approach for
each of the models you want to compare and pick the best model based on the estimated
performance. Finally, holdout set is used to make a decision on deploying the model or
not. See Figure 12.5 for an illustration of this approach.

157

Figure 12.4: Training/validation/holdout split: splitting the dataset randomly into 60% train-
ing, 20% validation, and 20% holdout sets

Figure 12.5: Cross-validation: splitting the dataset randomly into 5 folds; each fold is used as
a holdout set once and the model is trained on the remaining folds

158

• A similar approach to cross-validation is using bootstrap. Here the data are split ran-
domly with replacement into a training and a validation set. The training set is used
to train a model and the validation set to estimate the performance. Because of sam-
pling with replacement, the training set will contain duplicates and the validation set
will have different size for each bootstrap sample. However, because we repeat this boot-
strap splitting several times, each data point will eventually be used in training and in
validation. It’s up to you how many bootstrap samples you create. Once we evaluated
each bootstrap sample, the performance estimates are combined and used to compare
the various models and pick the best model based on the estimated performance. It is
best to use the same splittings for each of the models. See Figure 12.6 for an illustration
of this approach.

Figure 12.6: Bootstrap: splitting the dataset randomly into training and validation set with
replacement

There are more variations to these approaches. For example, you can use nested cross-
validation to tune the hyperparameters of a model. In this case, you use cross-validation
to compare different models and then use cross-validation again to tune the hyperparameters
of the best model. There are also specialized approaches for time series data. We will not
cover these approaches in this class.

In this section, we will see how to implement these approaches using the rsample package
which is part of tidymodels.

library(tidymodels)
or
library(rsample)

159

LIGHTBULB Useful to know

If you look at the literature, you will find that the terminology is not always consistent.
For example, some authors use the term validation set to refer to the holdout set. In
this class, we will use the term validation set to refer to the set that is used to compare
different models and holdout set to refer to the set that is used to evaluate the final
model. The rsample packages uses its own terminology.

12.2 Creating an initial split of the data into training and holdout
set

The first step in a model building step is to split the data into a training and a holdout set.
The objective of the holdout set is to get an unbiased estimate of the model performance for
the selected best model. The holdout set is used only once at the end of the modeling process
and not for any intermediate steps. rsample refers to the holdout set as the testing set.

We can use the function rsample::initial_split to create a single split of the data. Here
is an example:

set.seed(1353)
car_split <- initial_split(mtcars)
car_split

<Training/Testing/Total>
<24/8/32>

The function initial_split by itself doesn’t create different subsets of the data, it only
creates a blueprint for how the data should be split. Here, we see that the 32 data points are
split into 24 data points for training and 8 for testing. By default, the function splits the data
into 75% for training and 25% for testing.

To get the individual subsets, we need to use the functions training and testing.

train_data <- training(car_split)
test_data <- testing(car_split)

The function rsample::initial_split is used to create a single split of the data. It takes
several arguments. The most commonly used ones are:

• prop: the proportion of the data that should be used for training. The default is 0.75.

160

• strata: a variable that is used to stratify the data. The default is NULL. It is good
practice to use

• breaks: this argument is used for creating stratified samples from a continuous variable.
It specifies the number of breaks that should be used to create the strata. The default
is 4.

12.3 Creating an initial split of the data into training, validation,
and holdout set

If for some reason, you cannot afford to use one of the iterative approaches (cross-validation or
bootstrap), you can use a single split of the data into training, validation, and holdout set. The
training set is used to fit the model, the validation set to compare different models, and the
holdout set to evaluate the final model. The function rsample::initial_validation_split
allows you to create a random split of your dataset.

set.seed(9872)

car_split <- initial_validation_split(mtcars)
car_split

<Training/Validation/Testing/Total>
<19/6/7/32>

We see that the 32 data points are split into 19 data points for training, 6 for validation, and
7 for testing/holdout. By default, the function splits the data into 60% for training, 20% for
validation, and 20% for testing/holdout.

To get the individual subsets, we need to use the functions training, validation, and
testing.

train_data <- training(car_split)
validation_data <- validation(car_split)
holdout_data <- testing(car_split)

INFO Further information

• https://rsample.tidymodels.org/ is the documentation for the rsample package.

161

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/stratified-continuous.png")
knitr::include_graphics("images/model_workflow_validate.png")
knitr::include_graphics("images/validation_repeated_holdout.png")
knitr::include_graphics("images/validation_train_validation_holdout_split.png")
knitr::include_graphics("images/validation_cross_validation.png")
knitr::include_graphics("images/validation_bootstrap.png")
library(tidymodels)
or
library(rsample)
set.seed(1353)
car_split <- initial_split(mtcars)
car_split
train_data <- training(car_split)
test_data <- testing(car_split)
set.seed(9872)

car_split <- initial_validation_split(mtcars)
car_split
train_data <- training(car_split)
validation_data <- validation(car_split)
holdout_data <- testing(car_split)

162

13 Validating models

In Chapter 12, we covered various ways of splitting the data into subsets. In this chapter, we
will use these subsets to assess model performance for model validation using:

• a holdout set,
• cross-validation, and
• bootstrapping.

Figure 13.1: Model validation

Load required packages:

library(tidyverse)
library(tidymodels)
library(patchwork)

and setup the parallel backend for faster processing (see Section D.1 for details):

163

library(future)
plan(multisession, workers = parallel::detectCores(logical = FALSE))

13.1 Model validation using holdout set

In the following we demonstrate how to use a holdout set to assess the performance of a
regression model to predict mileage for cars.

Load an preprocess the data
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

Split the data into training and test/holdout sets
set.seed(1353)
car_split <- initial_split(mtcars)
train_data <- training(car_split)
holdout_data <- testing(car_split)

Train a model using the training set
formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

model <- linear_reg() %>%
set_engine("lm") %>%
fit(formula, data = train_data)

We now have a trained model and can use it to assess model performance for the training and
holdout set using the default regression metrics from yardstick.

perf_train <- augment(model, new_data = train_data) %>%
metrics(truth = mpg, estimate = .pred) %>%
mutate(data = "Training")

perf_holdout <- augment(model, new_data = holdout_data) %>%
metrics(truth = mpg, estimate = .pred) %>%
mutate(data = "Holdout")

We can combine the performance metrics for the training and holdout set into a single table
for comparison.

164

combine the two results
bind_rows(perf_train, perf_holdout) %>%
select the columns of interest
select(data, .estimate, .metric) %>%
convert to wide format
pivot_wider(names_from = .metric, values_from = .estimate) %>%
knitr::kable(digits = 2) %>%
kableExtra::kable_styling(full_width = FALSE)

data rmse rsq mae

Training 2.06 0.90 1.62
Holdout 3.10 0.74 2.78

The performance metrics on the training set indicate better performance compared to the
holdout set. This is expected since the model was trained on the training set.

13.2 Model validation using cross-validation

We will now use cross-validation to assess model performance. This time, we train a logistic re-
gression model for the Universal Bank dataset using the entire dataset and use cross-validation
to assess model performance. First download the dataset and preprocess it.

Load and preprocess the data
file <- "https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"
data <- read_csv(file)
data <- data %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),
levels = c(1, 0)),

Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)

165

Now we setup and execute the cross-validation.

Use 10-fold cross-validation to assess model performance
set.seed(1353)
folds <- vfold_cv(data, strata = Personal.Loan)

define the model
formula <- Personal.Loan ~ Age + Experience + Income + Family + CCAvg +
Education + Mortgage + Securities.Account + CD.Account +
Online + CreditCard

logreg_model <- logistic_reg() %>%
set_engine("glm")

define and execute the cross-validation workflow
logreg_wf <- workflow() %>%
add_model(logreg_model) %>%
add_formula(formula)

logreg_fit_cv <- logreg_wf %>%
fit_resamples(folds)

This is all we need to do. We first define our resampling approach using the function vfold_cv
passing in the dataset and information about the column we want to use for stratified sampling,
the outcome variable Personal.Loan. The default v=10 is used to define a 10-fold cross
validation. Next we setup our model and define the formulat to use for training. Finaly,
we combine the model and formula into a workflow and use the fit_resamples function to
execute the cross-validation. The results are stored in the logreg_fit_cv object. Let’s have
a look at it:

logreg_fit_cv

Resampling results
10-fold cross-validation using stratification
A tibble: 10 x 4

splits id .metrics .notes
<list> <chr> <list> <list>

1 <split [4500/500]> Fold01 <tibble [3 x 4]> <tibble [0 x 3]>
2 <split [4500/500]> Fold02 <tibble [3 x 4]> <tibble [0 x 3]>
3 <split [4500/500]> Fold03 <tibble [3 x 4]> <tibble [0 x 3]>
4 <split [4500/500]> Fold04 <tibble [3 x 4]> <tibble [0 x 3]>
5 <split [4500/500]> Fold05 <tibble [3 x 4]> <tibble [0 x 3]>
6 <split [4500/500]> Fold06 <tibble [3 x 4]> <tibble [0 x 3]>

166

7 <split [4500/500]> Fold07 <tibble [3 x 4]> <tibble [0 x 3]>
8 <split [4500/500]> Fold08 <tibble [3 x 4]> <tibble [0 x 3]>
9 <split [4500/500]> Fold09 <tibble [3 x 4]> <tibble [0 x 3]>
10 <split [4500/500]> Fold10 <tibble [3 x 4]> <tibble [0 x 3]>

It’s not very informative. logreg_fit_cv is a tibble where each row corresponds to models
trained for each fold (column id).1 Information about what was used at each iteration is in
the splits column. The performance on the out-of-fold validation set is in the .metrics
column.

We can now use the collect_metrics function to extract information about the performance
metrics for each fold. By default it will summarize the information for each metric into a mean
and standard error.

cv_metrics <- collect_metrics(logreg_fit_cv)
cv_metrics

A tibble: 3 x 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>

1 accuracy binary 0.958 10 0.00184 Preprocessor1_Model1
2 brier_class binary 0.0322 10 0.00123 Preprocessor1_Model1
3 roc_auc binary 0.961 10 0.00502 Preprocessor1_Model1

We can see that during cross-validation, the model performance is evaluated using accuracy
and the AUC under the ROC curve. The metrics are combined into a mean and an associated
standard deviation.

By default, individual predictions on the out-of-fold dataset for the performance metrics are
not returned. If we want to keep these for further analysis, we need to add a control statement
to the fit_resamples call.

logreg_fit_cv <- logreg_wf %>%
fit_resamples(folds, control = control_resamples(save_pred = TRUE))

The control_resamples function returns the is used to pass additional arguments to the
fit_resamples function. Here, we override the default behavior by setting save_pred=TRUE
which instructs the function to preserve the out-of-fold predictions for each fold. The
collect_predictions function returns a tibble with all predictions for each fold.

1This means, the fold was used as the validation set and the remaining folds were used for training.

167

cv_predictions <- collect_predictions(logreg_fit_cv)
cv_predictions

A tibble: 5,000 x 7
.pred_class .pred_Yes .pred_No id .row Personal.Loan .config
<fct> <dbl> <dbl> <chr> <int> <fct> <chr>

1 No 0.0175 0.982 Fold01 7 No Preprocessor1_Mode~
2 No 0.0490 0.951 Fold01 25 No Preprocessor1_Mode~
3 No 0.0123 0.988 Fold01 28 No Preprocessor1_Mode~
4 Yes 0.785 0.215 Fold01 30 Yes Preprocessor1_Mode~
5 No 0.00122 0.999 Fold01 31 No Preprocessor1_Mode~
6 No 0.00517 0.995 Fold01 47 No Preprocessor1_Mode~
7 No 0.00142 0.999 Fold01 59 No Preprocessor1_Mode~
8 Yes 0.654 0.346 Fold01 60 No Preprocessor1_Mode~
9 No 0.0113 0.989 Fold01 74 No Preprocessor1_Mode~
10 No 0.000650 0.999 Fold01 88 No Preprocessor1_Mode~
i 4,990 more rows

We can use this information to calculate individual ROC curves on the out-of-fold predictions
(see Figure 13.2).

cv_predictions %>%
group_by(id) %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first") %>%
autoplot() +
geom_abline(lty = 2) +
theme(legend.position = "none")

168

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Figure 13.2: Individual ROC curves for cross-validation folds

Instead of showing individual ROC curves for each fold, we can also combine them into a
single plot. Figure 13.3 compares the ROC curves for the cross-validation predictions and the
predictions on the training set.

Train a model on the full dataset
full_model <- logistic_reg() %>%
set_engine("glm") %>%
fit(formula, data = data)

cv_roc <- cv_predictions %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

ontrain_roc <- augment(full_model, new_data = data) %>%
roc_curve(Personal.Loan, .pred_Yes, event_level = "first")

ggplot() +
geom_path(data = cv_roc,

169

aes(x = 1 - specificity, y = sensitivity)) +
geom_path(data = ontrain_roc,

aes(x = 1 - specificity, y = sensitivity),
color = "red") +

geom_abline(lty = 2)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Figure 13.3: Comparison of ROC curves for cross-validation predictions (black) and on-training
set predictions (red); the curves are hardly distinguishable

The ROC curves for the cross-validation predictions are very similar to the ROC curves for the
predictions on the training set. This indicates that the model is not overfitting the training
data.

170

13.3 Model validation using bootstrapping

The bootstraps function from the rsample package can be used to generate bootstrap sam-
ples.2 We can use these to assess model performance using bootstrap resampling. This time,
we train a nearest neighbor model (see Section A.5) for the Universal Bank dataset. Because
the kknn package supports both classification and regression, we need to specify the type of
model we want to train.

Use bootstrap to assess model performance
set.seed(1353)
resamples <- rsample::bootstraps(data)

define the model
formula <- Personal.Loan ~ Age + Experience + Income + Family +
CCAvg + Education + Mortgage + Securities.Account +
CD.Account + Online + CreditCard

nn_model <- nearest_neighbor(neighbors = 5) %>%
set_mode("classification") %>%
set_engine("kknn")

define and execute the cross-validation workflow
nn_wf <- workflow() %>%
add_model(nn_model) %>%
add_formula(formula)

nn_fit_boot <- nn_wf %>%
fit_resamples(resamples,

control = control_resamples(save_pred = TRUE))

If you compare the code for bootstrap sampling with the code for cross-validation, you will
notice that the only difference is the call to bootstraps instead of vfold_cv and the use of a
different model. The rest of the code is identical.

Let’s have a look at the results.

nn_fit_boot

Resampling results
Bootstrap sampling

2Be careful for typos here. There is also the broom::bootstrap function, which will give you a missing
argument warning.

171

A tibble: 25 x 5
splits id .metrics .notes .predictions
<list> <chr> <list> <list> <list>

1 <split [5000/1846]> Bootstrap01 <tibble [3 x 4]> <tibble> <tibble>
2 <split [5000/1809]> Bootstrap02 <tibble [3 x 4]> <tibble> <tibble>
3 <split [5000/1874]> Bootstrap03 <tibble [3 x 4]> <tibble> <tibble>
4 <split [5000/1835]> Bootstrap04 <tibble [3 x 4]> <tibble> <tibble>
5 <split [5000/1845]> Bootstrap05 <tibble [3 x 4]> <tibble> <tibble>
6 <split [5000/1856]> Bootstrap06 <tibble [3 x 4]> <tibble> <tibble>
7 <split [5000/1839]> Bootstrap07 <tibble [3 x 4]> <tibble> <tibble>
8 <split [5000/1841]> Bootstrap08 <tibble [3 x 4]> <tibble> <tibble>
9 <split [5000/1859]> Bootstrap09 <tibble [3 x 4]> <tibble> <tibble>
10 <split [5000/1834]> Bootstrap10 <tibble [3 x 4]> <tibble> <tibble>
i 15 more rows

There were issues with some computations:

- Warning(s) x25: variable '..y' is absent, its contrast will be ignored

Run `show_notes(.Last.tune.result)` for more information.

Again, this is not very informative. We have 25 bootstrap samples and various columns
that contain information about each sample. Because we used save_pred=TRUE in the
fit_resamples call, we also have the .predictions column with the individual predic-
tions.

We can use collect_metrics to extract the performance metrics for each fold and compare
the result to the cross-validation results for the logistic regression model.3

boot_metrics <- collect_metrics(nn_fit_boot)

bind_rows(
cv_metrics %>% mutate(model = "Logistic regression"),
boot_metrics %>% mutate(model = "Nearest neighbor")

) %>%
select(model, mean, .metric) %>%
pivot_wider(names_from = .metric, values_from = mean) %>%
knitr::kable(digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

3This is for demonstration only! In practice, you would use the same validation approach for both models.

172

model accuracy brier_class roc_auc

Logistic regression 0.958 0.032 0.961
Nearest neighbor 0.961 0.032 0.918

Base on accuracy, we would conclude that the nearest neighbor model is better than the logistic
regression model. However, the AUC for the nearest neighbor model is significantly lower.

Let’s see if this is reflected in the ROC curves of the two models. Figure 13.4 compares the
ROC curves for the bootstrap predictions and the predictions on the training set.

Train a model on the full dataset
full_model <- nn_wf %>% fit(data)

boot_roc <- collect_predictions(nn_fit_boot) %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

ontrain_roc <- augment(full_model, new_data = data) %>%
roc_curve(Personal.Loan, .pred_Yes, event_level = "first")

ggplot() +
geom_path(data = boot_roc,

aes(x = 1 - specificity, y = sensitivity)) +
geom_path(data = ontrain_roc,

aes(x = 1 - specificity, y = sensitivity),
color = "red", lty = 2) +

geom_path(data = cv_roc,
aes(x = 1 - specificity, y = sensitivity),
color = "darkgrey", lty = 3) +

geom_abline(color = "grey")

173

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Figure 13.4: Comparison of ROC curves for bootstrap predictions (black, solid) and on-training
set predictions (red, dashed) for a nearest-neighbor model. For comparison, the
ROC curve for the logistic regression model is overlaid as well in grey (dotted).

Let’s first compare the ROC curves for the bootstrap predictions and the predictions on the
training set. The ROC curves for prediction of the full model on the training set (red curve)
represents an ideal model, i.e. every data point is correctly predicted. This is expected for a
nearest neighbor model. This observations emphasizes the importance of using a holdout set
or cross-validation to assess model performance.

The ROC curve for the bootstrap predictions (black curve) is more realistic. It is similar to
the ROC curve for the cross-validation predictions (grey curve). However, we can also see
that at the beginning, the ROC curve for the bootstrap predictions is below the ROC curve
for the cross-validation predictions. This confirms what we’ve seen from the AUC values.
However, we have not explored different numbers of neighbors. In fact, as we will see in
Section 15.4, increasing the number of neighbors will improve the performance of the nearest
neighbor model and ultimately result in a model that has a better ROC curve compared to
the logistic regression model.

174

13.3.1 Distribution of metrics for bootstrap samples

We can also use the bootstrap samples to assess the distribution of the performance metrics.
In this case, it is however better to increase the number of resamples. Here, we use 1000
bootstrap samples.

set.seed(123)
nn_fit_boot <- nn_wf %>%
fit_resamples(rsample::bootstraps(data, times = 1000),

control = control_resamples(save_pred = TRUE))

We repeat the bootstrap validation more times. By default, if we call collect_metrics we
get mean and standard error for each metric.

nn_fit_boot %>%
collect_metrics()

A tibble: 3 x 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>

1 accuracy binary 0.961 1000 0.000131 Preprocessor1_Model1
2 brier_class binary 0.0329 1000 0.000102 Preprocessor1_Model1
3 roc_auc binary 0.913 1000 0.000428 Preprocessor1_Model1

However, if we use the summarize=FALSE argument, we get the performance metrics calculated
for each bootstrap sample.

nn_fit_boot %>%
collect_metrics(summarize = FALSE) %>%
head()

A tibble: 6 x 5
id .metric .estimator .estimate .config
<chr> <chr> <chr> <dbl> <chr>

1 Bootstrap0001 accuracy binary 0.956 Preprocessor1_Model1
2 Bootstrap0001 roc_auc binary 0.917 Preprocessor1_Model1
3 Bootstrap0001 brier_class binary 0.0350 Preprocessor1_Model1
4 Bootstrap0002 accuracy binary 0.953 Preprocessor1_Model1
5 Bootstrap0002 roc_auc binary 0.906 Preprocessor1_Model1
6 Bootstrap0002 brier_class binary 0.0364 Preprocessor1_Model1

175

This allows us to calculate the distribution of the performance metrics. Figure 13.5 shows the
distribution of the two metrics for the bootstrap samples.

quantiles <- nn_fit_boot %>%
collect_metrics(summarize = FALSE) %>% 1

group_by(.metric) %>% 2

summarize(
q0.025 = quantile(.estimate, 0.025),
median = quantile(.estimate, 0.5),
q0.975 = quantile(.estimate, 0.975)

)
nn_fit_boot %>%
collect_metrics(summarize = FALSE) %>%
ggplot(aes(x = .estimate)) +
geom_histogram(bins = 50, fill = "darkgrey") + 3

facet_wrap(~.metric, scales = "free") +
geom_vline(data = quantiles, aes(xintercept = median), 4

color = "black") +
geom_vline(data = quantiles, aes(xintercept = q0.025),

color = "black", linetype = "dashed") +
geom_vline(data = quantiles, aes(xintercept = q0.975),

color = "black", linetype = "dashed")

1 We use summarize=FALSE to get the performance metrics for each bootstrap sample.
2 We group the data by metric and calculate the 2.5%, 50%, and 97.5% quantiles for each

metric.
3 Together with the facet_wrap command, this creates three histograms, one for each metric.
4 This and the following two lines add vertical lines to the plot to indicate the median and

the 95% confidence interval for each metric.

176

accuracy brier_class roc_auc

0.950 0.955 0.960 0.965 0.970 0.025 0.030 0.035 0.040 0.88 0.90 0.92 0.94

0

20

40

0

20

40

0

10

20

30

40

50

.estimate

co
un

t

Figure 13.5: Distribution of performance metrics for bootstrap samples; the blue lines show
the median and the 95% confidence interval

INFO Further information

• https://tune.tidymodels.org/reference/control_grid.html control the execution of
the fit_resamples function

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/model_workflow_validate.png")
library(tidyverse)
library(tidymodels)
library(patchwork)
library(future)
plan(multisession, workers = parallel::detectCores(logical = FALSE))
Load an preprocess the data
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%

177

https://tune.tidymodels.org/reference/control_grid.html

mutate(
vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

Split the data into training and test/holdout sets
set.seed(1353)
car_split <- initial_split(mtcars)
train_data <- training(car_split)
holdout_data <- testing(car_split)

Train a model using the training set
formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

model <- linear_reg() %>%
set_engine("lm") %>%
fit(formula, data = train_data)

perf_train <- augment(model, new_data = train_data) %>%
metrics(truth = mpg, estimate = .pred) %>%
mutate(data = "Training")

perf_holdout <- augment(model, new_data = holdout_data) %>%
metrics(truth = mpg, estimate = .pred) %>%
mutate(data = "Holdout")

combine the two results
bind_rows(perf_train, perf_holdout) %>%
select the columns of interest
select(data, .estimate, .metric) %>%
convert to wide format
pivot_wider(names_from = .metric, values_from = .estimate) %>%
knitr::kable(digits = 2) %>%
kableExtra::kable_styling(full_width = FALSE)

Load and preprocess the data
file <- "https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"
data <- read_csv(file)
data <- data %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

178

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),
levels = c(1, 0)),

Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)
Use 10-fold cross-validation to assess model performance
set.seed(1353)
folds <- vfold_cv(data, strata = Personal.Loan)

define the model
formula <- Personal.Loan ~ Age + Experience + Income + Family + CCAvg +
Education + Mortgage + Securities.Account + CD.Account +
Online + CreditCard

logreg_model <- logistic_reg() %>%
set_engine("glm")

define and execute the cross-validation workflow
logreg_wf <- workflow() %>%
add_model(logreg_model) %>%
add_formula(formula)

logreg_fit_cv <- logreg_wf %>%
fit_resamples(folds)

logreg_fit_cv
cv_metrics <- collect_metrics(logreg_fit_cv)
cv_metrics
logreg_fit_cv <- logreg_wf %>%
fit_resamples(folds, control = control_resamples(save_pred = TRUE))

cv_predictions <- collect_predictions(logreg_fit_cv)
cv_predictions
cv_predictions %>%
group_by(id) %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first") %>%
autoplot() +
geom_abline(lty = 2) +
theme(legend.position = "none")

Train a model on the full dataset
full_model <- logistic_reg() %>%
set_engine("glm") %>%
fit(formula, data = data)

cv_roc <- cv_predictions %>%

179

roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

ontrain_roc <- augment(full_model, new_data = data) %>%
roc_curve(Personal.Loan, .pred_Yes, event_level = "first")

ggplot() +
geom_path(data = cv_roc,

aes(x = 1 - specificity, y = sensitivity)) +
geom_path(data = ontrain_roc,

aes(x = 1 - specificity, y = sensitivity),
color = "red") +

geom_abline(lty = 2)
Use bootstrap to assess model performance
set.seed(1353)
resamples <- rsample::bootstraps(data)

define the model
formula <- Personal.Loan ~ Age + Experience + Income + Family +
CCAvg + Education + Mortgage + Securities.Account +
CD.Account + Online + CreditCard

nn_model <- nearest_neighbor(neighbors = 5) %>%
set_mode("classification") %>%
set_engine("kknn")

define and execute the cross-validation workflow
nn_wf <- workflow() %>%
add_model(nn_model) %>%
add_formula(formula)

nn_fit_boot <- nn_wf %>%
fit_resamples(resamples,

control = control_resamples(save_pred = TRUE))
nn_fit_boot
boot_metrics <- collect_metrics(nn_fit_boot)

bind_rows(
cv_metrics %>% mutate(model = "Logistic regression"),
boot_metrics %>% mutate(model = "Nearest neighbor")

) %>%
select(model, mean, .metric) %>%
pivot_wider(names_from = .metric, values_from = mean) %>%

180

knitr::kable(digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

Train a model on the full dataset
full_model <- nn_wf %>% fit(data)

boot_roc <- collect_predictions(nn_fit_boot) %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

ontrain_roc <- augment(full_model, new_data = data) %>%
roc_curve(Personal.Loan, .pred_Yes, event_level = "first")

ggplot() +
geom_path(data = boot_roc,

aes(x = 1 - specificity, y = sensitivity)) +
geom_path(data = ontrain_roc,

aes(x = 1 - specificity, y = sensitivity),
color = "red", lty = 2) +

geom_path(data = cv_roc,
aes(x = 1 - specificity, y = sensitivity),
color = "darkgrey", lty = 3) +

geom_abline(color = "grey")
set.seed(123)
nn_fit_boot <- nn_wf %>%
fit_resamples(rsample::bootstraps(data, times = 1000),

control = control_resamples(save_pred = TRUE))
nn_fit_boot %>%
collect_metrics()

nn_fit_boot %>%
collect_metrics(summarize = FALSE) %>%
head()

quantiles <- nn_fit_boot %>%
collect_metrics(summarize = FALSE) %>% 1

group_by(.metric) %>% 2

summarize(
q0.025 = quantile(.estimate, 0.025),
median = quantile(.estimate, 0.5),
q0.975 = quantile(.estimate, 0.975)

)
nn_fit_boot %>%
collect_metrics(summarize = FALSE) %>%
ggplot(aes(x = .estimate)) +
geom_histogram(bins = 50, fill = "darkgrey") + 3

181

facet_wrap(~.metric, scales = "free") +
geom_vline(data = quantiles, aes(xintercept = median), 4

color = "black") +
geom_vline(data = quantiles, aes(xintercept = q0.025),

color = "black", linetype = "dashed") +
geom_vline(data = quantiles, aes(xintercept = q0.975),

color = "black", linetype = "dashed")

182

14 Model tuning - the basics

In the previous chapters, we learned how to define data preprocessing steps, select a specific
model type, train the model and validate its performance. In this chapter, we will learn how
to tune our models to get the best performance out of them.

There are many ways a model can be tuned.

• Feature engineering: Feature engineering is the process of creating new features from
existing features. This can be as simple as replacing a feature with its square root value,
or can involve combining several features. We will learn more about feature engineering
in Section 15.1.

• Regularization: Regularization is a technique used to prevent overfitting in models.
It involves adding a penalty term to the loss function used to train the model. We will
learn more about regularization in Section 15.2.

• Feature selection: Feature selection is the process of selecting the most important
features for a given model. We will learn more about feature selection in Section 15.3.

• Hyperparameter tuning: Hyperparameters are parameters that are not learned dur-
ing the training process. Instead, they are set before the training process starts. For
example, the number of neighbors in a k-nearest neighbor model is a hyperparameter.
Hyperparameter tuning is the process of finding the best hyperparameter values for a
given model type. We will learn more about hyperparameter tuning in this Chapter and
in Section 15.4.

• Threshold selection: Threshold selection is the process of finding the best threshold
for a given classification model. This is currently not included in the workflow package,
but can be done post-training using the probably package (see Section 11.1.2).

Figure 14.1 shows how this step fits into the overall model workflow.

Load the packages we need for this chapter.

library(tidymodels)

183

Figure 14.1: Model tuning using tune

14.1 Specifying tunable parameters

In the tidymodels framework, the tune package has the task of optimizing models using tuning.
To do this, it needs to know what should be tuned. We can specify tunable parameters in
the preprocessing steps defined using recipe objects and in the model definition step using
parsnip objects.

For example, for principal component regression, we want to select the number of principal
components to use in the regression model. The step_pca function has the num_comp argument
that specifies the number of principal components to use. If we want to find the optimal value
of num_comp, we specify this as a tuning parameter using the tune() function in the recipe.

mtcars_rec <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors(), num_comp = tune())

Another example, is the number of neighbors in a 𝑘-nearest neighbor model. We can specify
this number in the nearest_neighbor() function using the neighbors argument.

model <- nearest_neighbor(mode = "regression", neighbors = tune())

184

By combining the recipe and model into a workflow, we define a k-nearest neighbor model using
principal components where we optimize both the number of components and the number of
neighbors.

mtcars_workflow <- workflow() %>%
add_recipe(mtcars_rec) %>%
add_model(model)

parameters <- extract_parameter_set_dials(mtcars_workflow)
parameters %>% knitr::kable()

nameid source

com-
po-
nent

com-
po-
nent_idobject

neigh-
bors

neigh-
bors

model_specnear-
est_neigh-
bor

maininteger , 1 , 15 , TRUE , TRUE , # Nearest Neighbors

num_compnum_comprecipestep_pcapca_GfWWIinteger, 1, 4, TRUE, TRUE, # Components, function (object, x,
log_vals = FALSE, …) , {, check_param(object), rngs <-
range_get(object, original = FALSE), if
(!is_unknown(rngs𝑢𝑝𝑝𝑒𝑟)), 𝑟𝑒𝑡𝑢𝑟𝑛(𝑜𝑏𝑗𝑒𝑐𝑡),, 𝑥𝑑𝑖𝑚𝑠 <
−𝑑𝑖𝑚(𝑥), 𝑖𝑓(𝑖𝑠.𝑛𝑢𝑙𝑙(𝑥𝑑𝑖𝑚𝑠)), 𝑐𝑙𝑖 ∶∶ 𝑐𝑙𝑖𝑎𝑏𝑜𝑟𝑡("𝐶𝑎𝑛𝑛𝑜𝑡𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑙𝑢𝑚𝑛𝑠.𝐼𝑠.𝑎𝑟𝑔𝑥𝑎2𝐷𝑑𝑎𝑡𝑎𝑜𝑏𝑗𝑒𝑐𝑡?"),, 𝑖𝑓(𝑙𝑜𝑔𝑣𝑎𝑙𝑠), 𝑟𝑛𝑔𝑠[2] < −𝑙𝑜𝑔10(𝑥𝑑𝑖𝑚𝑠[2]),, 𝑒𝑙𝑠𝑒, 𝑟𝑛𝑔𝑠[2] < −𝑥𝑑𝑖𝑚𝑠[2],, 𝑖𝑓(𝑜𝑏𝑗𝑒𝑐𝑡type
== “integer” & is.null(object$trans)) {, rngs <- as.integer(rngs), },
range_set(object, rngs), }

The extract_parameter_set_dials function tells us that the workflow has two tunable pa-
rameters: num_comp and neighbors. The table also informs us where the parameters are used:
neighbors is used in the nearest_neighbor function and num_comp is used in the step_pca
function. Most importantly, it identifies the type of tuning that is used for each parameter.
The name column tells us the function from the dials package that is used to optimize the
parameter; see the dials documentation for more information.

The object column contains the actual definition of the search space of the parameter. Let’s
have a look at the default settings.

parameters$object[1]

[[1]]

Nearest Neighbors (quantitative)

Range: [1, 15]

185

https://dials.tidymodels.org/reference/index.html

parameters$object[2]

[[1]]

Components (quantitative)

Range: [1, 4]

The number of components in the PCA can range between 1 and 4, the number of neighbors
between 1 and 15. This may not be suitable for our problem and it often isn’t. We can change
the settings for one or more of the tunable parameters using the update function.

parameters <- parameters %>%
update(

num_comp = num_comp(c(1, 10)),
neighbors = neighbors(c(1, 5)),

)

This increases the search range for number of components from 1 to 10 and reduces the search
space for neighbors from 1 to 5.

LIGHTBULB Useful to know

If you have multiple tuning parameters in your workflow of the same type, you identify
them using an identifier in the tune function, e.g. tune("pca1") and tune("pca2").
You can then modify the default settings for each of them separately, e.g.

parameter_set <- parameter_set %>%
update(
pca1 = num_comp(10, 30),
pca2 = num_comp(1, 5),

)

14.2 Data-specific tuning parameters

The previous section we used the number of neighbors as an example. While in principle it
could be set to a value larger than the number of data points in the training set, realistically

186

the value of the tuning parameter will always be in a range that is independent of the data
set. 1

However, there are tuning parameters, where the range can be dependent on the number of
features. Some tuning parameters have a data-specific component. For example, in random
forests (see Section A.12), we can control the number of features that are evaluated at each
split of the decision trees with the mtry parameter. This value can range between 1 and
the number of features in the dataset after preprocessing. The upper bound of this value is
therefore unknown and needs to be explicitly set. Tidymodel will let you know when this is
the case. Let’s look at the random forest case:

wf <- workflow() %>%
add_recipe(mtcars_rec) %>%
add_model(rand_forest(mtry = tune(), mode = "regression"))

p <- extract_parameter_set_dials(wf)
p

Collection of 2 parameters for tuning

identifier type object
mtry mtry nparam[?]

num_comp num_comp nparam[+]

Model parameters needing finalization:

Randomly Selected Predictors ('mtry')

See `?dials::finalize()` or `?dials::update.parameters()` for more information.

The output tells us that some

1This is not quite true for the number of principal components, however transformation into principal compo-
nents is usually done only for datasets with a larger number of features.

187

Model parameters needing finalization:
Randomly Selected Predictors ('mtry')

We can find out more about this by inspecting p$object[[1]].

p$object[[1]]

Randomly Selected Predictors (quantitative)

Range: [1, ?]

The range for the mtry parameter is defined as [1, ?] where ? indicates that the upper
bound is unspecified. If we use the parameters as they are, tuning will throw an error.

grid_regular(p)

Error in `grid_regular()`:
! These arguments contain unknowns: `mtry`.
� See the `finalize()` function.

We need to specify the upper bound for the mtry parameter. This can be done by setting a
range using dials::update_parameters in the same way as we did for other parameters in
Section 14.1. Alternatively, we can use the dials::finalize function as follows:

p <- extract_parameter_set_dials(wf) %>%
finalize(mtcars %>% select(-mpg))

p$object[[1]]

Randomly Selected Predictors (quantitative)

Range: [1, 10]

The range for the mtry parameter is now defined as [1, 10].

14.3 Tuning a workflow

Now that we have specified the tuning parameters, we can use them to search our parameter
space to identify the best model.

188

set.seed(123)
tune_results <- tune_grid(mtcars_workflow,
resamples = vfold_cv(mtcars), grid = grid_regular(parameters))

The tune_grid function requires the workflow, information about the validation strategy
(resamples) and the search space (grid). With the exception of the grid argument, this
is very similar to the fit_resamples function that we encountered in Chapter 13. For each
combination of tuning parameters defined in the grid argument, the tune_grid function trains
a model and evaluates its performance.

The grid argument specifies the search space for the tuning parameters. In this case, we use
a regular grid search. We will learn more about grid search strategies in Section 14.4.

Printing the tune_results object is not very informative. The output will only tell us that
it’s a tibble with tuning results for a 10-fold cross valiation. The tibble contains the tuning
parameters and the performance metrics for each model and cross-validation fold.

You can visualize the results using the autoplot function:

autoplot(tune_results)

rm
se

rsq

1 2 3 4 5

2.6

2.8

3.0

3.2

0.65

0.70

0.75

0.80

0.85

Nearest Neighbors

Components

 1

 5

10

Figure 14.2: Visualization of tuning results for workflow tuning

Figure 14.2 shows the results of the tuning process. The 𝑥-axis shows the number of neighbors
in the 𝑘-nearest neighbor model and the 𝑦-axis the values of the two calculated metrics, rmse

189

and rsq. The color of the points corresponds to the number of components in the PCA. Points
with the same number of components are connected by a line. The best model is the one with
the lowest RMSE. We can see that the best model has one component in the PCA and five
neighbors in the 𝑘-nearest neighbor model.

The collect_metrics function can be used to extract the performance metrics from the
tuning results.

collect_metrics(tune_results) %>% head(7)

A tibble: 7 x 8
neighbors num_comp .metric .estimator mean n std_err .config

<int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 1 1 rmse standard 3.23 10 0.339 Preprocessor1_Model1
2 1 1 rsq standard 0.817 10 0.0770 Preprocessor1_Model1
3 3 1 rmse standard 2.55 10 0.233 Preprocessor1_Model2
4 3 1 rsq standard 0.839 10 0.0910 Preprocessor1_Model2
5 5 1 rmse standard 2.47 10 0.106 Preprocessor1_Model3
6 5 1 rsq standard 0.841 10 0.0878 Preprocessor1_Model3
7 1 5 rmse standard 3.32 10 0.571 Preprocessor2_Model1

The function determines the mean and standard deviation for each metric across the 10 folds.

The show_best function selects a specific metric and shows the five best model for that met-
ric.

show_best(tune_results, metric = "rmse")

A tibble: 5 x 8
neighbors num_comp .metric .estimator mean n std_err .config

<int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 5 1 rmse standard 2.47 10 0.106 Preprocessor1_Model3
2 3 1 rmse standard 2.55 10 0.233 Preprocessor1_Model2
3 3 10 rmse standard 3.05 10 0.364 Preprocessor3_Model2
4 3 5 rmse standard 3.15 10 0.551 Preprocessor2_Model2
5 1 10 rmse standard 3.16 10 0.549 Preprocessor3_Model1

Finally, the select_best function selects the best model based on a specific metric.

best_parameters <- select_best(tune_results, metric = "rmse") %>%
select(-.config)

best_parameters

190

A tibble: 1 x 2
neighbors num_comp

<int> <int>
1 5 1

The best_parameters object contains the best parameters for each step in the workflow. We
can use this object to finalize the workflow.

best_workflow <- mtcars_workflow %>%
finalize_workflow(best_parameters) %>%
fit(mtcars)

best_workflow

== Workflow [trained] ==
Preprocessor: Recipe
Model: nearest_neighbor()

-- Preprocessor --
2 Recipe Steps

* step_normalize()
* step_pca()

-- Model ---

Call:
kknn::train.kknn(formula = ..y ~ ., data = data, ks = min_rows(5L, data, 5))

Type of response variable: continuous
minimal mean absolute error: 2.104075
Minimal mean squared error: 5.900349
Best kernel: optimal
Best k: 5

The finalize_workflow function trains the workflow using the best parameters and the full
training set. The resulting workflow can be used to make predictions on new data.

df <- tibble(
actual = mtcars$mpg,
predicted = predict(best_workflow, new_data = mtcars)$.pred

)

191

ggplot(df, aes(x = actual, y = predicted)) +
geom_point() +
geom_abline()

15

20

25

30

10 15 20 25 30 35
actual

pr
ed

ic
te

d

Figure 14.3: Visualization of actual versus predicted values of mpg

Figure 14.3 shows the actual versus predicted values for the best model. The model seems to
do a good job at predicting the actual values. However, this is the prediction on the training
set and we obviously need to assess the model performance on a separate holdout set.

14.4 Grid search strategies

The tune package implements a variety of approaches to search the parameter space.

• grid_regular: we used this function in the previous section; it searches the parameter
space using a systematic grid of parameter values. In design of experiments, this is
known as a full factorial design.

• grid_random: this approach randomly samples combinations of parameter values
• grid_space_filling: this is a general function that implements different space filling

designs to cover the parameter space more evenly. The specific design is specified using
the type argument. Use for example:

– default: uses one of several pre-defined space filling designs

192

– latin_hypercube: Latin hypercube sampling is an approach that comes from the
field of experimental design. It is similar to random sampling, but ensures that the
parameter space is sampled more evenly.

– max_entropy: maximum entropy sampling also aims to cover the search space
evenly.

Figure 14.4 shows the difference between the different methods using an example with two
continuous parameters, penalty and mixtures, the tuning parameters of a penalized logistic
regression model.

The regular grid splits each parameter range into a fixed number of points, here 10, and
enumerates all possible combinations of the parameters. This results in 10 x 10 = 100 models.
The random grid randomly samples 30 combinations of the parameters. We can see that
there are areas of the parameters space that are not well covered. The Latin hypercube
and maximum entropy sampling approaches also randomly sample 30 combinations of the
parameters, but in this case, there seems to be a more uniform coverage of the parameter
space.

Let’s compare the different search strategies using a real example. We will use the mtcars
dataset and try to predict the fuel efficiency of cars using a linear regression model. We will
use the glmnet engine which allows us to tune L1 and L2 regularization using the penalty and
mixture parameters in the linear regression model.

set.seed(123)

recipe <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_numeric_predictors())

model <- linear_reg(mode = "regression", engine = "glmnet",
penalty = tune(), mixture = tune())

wf <- workflow() %>% 1

add_recipe(recipe) %>%
add_model(model)

parameters <- extract_parameter_set_dials(wf) %>% 2

update(
penalty = penalty(c(-3, 0.75))

)

1 Define workflow for a regularized linear regression model
2 Define the tuning parameter ranges; defaut values are used for mixture; penalty is adjusted

based on preliminary runs (not shown)

We can now apply the different search strategies to tune the model.

193

Figure 14.4: Model tuning using tune

194

resamples <- vfold_cv(mtcars) 1

model_regular <- tune_grid(wf, resamples = resamples, 2

grid = grid_regular(parameters, levels = 10))
nrandom <- 30
model_random <- tune_grid(wf, resamples = resamples, 3

grid = grid_random(parameters, size = nrandom))
model_latin_hypercube <- tune_grid(wf, resamples = resamples,
grid = grid_space_filling(parameters, size = nrandom,

type = "latin_hypercube"))
model_max_entropy <- tune_grid(wf, resamples = resamples,
grid = grid_space_filling(parameters, size = nrandom,

type = "max_entropy"))

1 For better comparison, we use the same resamples for all tuning runs.
2 In this tuning run, we use a regular grid with 10 levels for each parameter, resulting in 100

combinations.
3 This and the following two tuning runs, use random sampling from the parameter space.

The first uses random sampling, the second uses a latin hypercube, and the third uses
max entropy sampling. All three explore 30 random combinations of the parameters.

df <- rbind(
cbind(grid = "regular", tested = 100,

model_regular %>% show_best(metric = "rmse", n = 1)),
cbind(grid = "random", tested = nrandom,

model_random %>% show_best(metric = "rmse", n = 1)),
cbind(grid = "latin_hypercube", tested = nrandom,

model_latin_hypercube %>% show_best(metric = "rmse", n = 1)),
cbind(grid = "max_entropy", tested = nrandom,

model_max_entropy %>% show_best(metric = "rmse", n = 1))
) %>%
select(-c(.metric, .estimator, n, .config)) %>%
mutate(

grid = factor(grid, levels = c(
"regular", "random", "latin_hypercube", "max_entropy"))

)

The following table shows the best model for each search strategy.

df %>%
rename(RMSE = "mean") %>%
mutate_if(is.numeric, format, digits = 3, nsmall = 0) %>%
knitr::kable()

195

grid tested penalty mixture RMSE std_err

regular 100 0.825 1.0000 2.48 0.447
random 30 1.654 0.0705 2.51 0.411
latin_hypercube 30 1.851 0.1087 2.52 0.421
max_entropy 30 1.201 0.7782 2.53 0.466

Superficially, it seems that the regular grid search resulted in the best model. However, the
difference to the other models is very small and well within the observed variation of the
estimated cross-validation performance. Figure 14.5 shows the mean and standard deviation
of the RMSE for each search strategy.

ggplot(df, aes(x = grid, y = mean,
ymin = mean - std_err, ymax = mean + std_err)) +

geom_point() +
geom_pointrange() +
xlab("Method to define grid") + ylab("Mean rmsq error")

2.00

2.25

2.50

2.75

3.00

regular random latin_hypercube max_entropy
Method to define grid

M
ea

n
rm

sq
 e

rr
or

Figure 14.5: Comparison of different search strategies

It is also important to stress, that the regular grid search is much more computationally
expensive than the other approaches. The regular grid search tested 100 models, the other
methods tested only 30 different models. It also seems as if the best models are obtained for

196

a mixture value of 1, i.e. a pure lasso model. If the best value in the search space is at the
boundary of the search space, it is likely that random methods will not find it. If you think
this is the case, remove the parameter from tuning and fix the value in the model definition.

LIGHTBULB Useful to know

In the literature, the regular grid search is usually taught as the default approach to
tuning. However, it is not necessarily the best approach. The random approaches are
often a better choice. They can be more efficient requiring fewer model evaluations.

14.5 Bayesian Hyperparameter optimization

The tune package also implements Bayesian hyperparameter optimization. Bayesian opti-
mization is a sequential approach to hyperparameter optimization. To initialize the method,
random sampling is used to get a rough exploration of the parameter space. Using the vali-
dation results, a Bayesian model, a Gaussian process model to be precise, is trained using the
parameter combinations as predictors and the validation performance as the outcome. The
Gaussian process model then predicts the validation performance for a large number of pa-
rameter combinations. This value combined with the uncertainty of the prediction is used to
prioritize the next parameter combination finding a trade-off between global exploration and
local exploitation. The most useful combination is then evaluated and the process is repeated
with the old and new data until a stopping criteria is met (maximum number of iterations or
no improvement).

Bayesian hyperparameter optimization is available with the tune_bayes function.

model_bayes <- tune_bayes(wf, resamples = resamples,
param_info = parameters, iter = 25)

With these settings, the function will create an initial model with 5 evaluations followed by 25
iterations. The param_info argument is used to specify the search space. The iter argument
specifies the number of iterations. The tune_bayes function returns a tune_results object
that can be used in the same way as the tune_grid function.

Figure 14.6 demonstrates the process of the Bayesian hyperparameter optimization.

regular_metrics <- model_regular %>%
collect_metrics() %>%
filter(.metric == "rmse")

bayes_metrics <- model_bayes %>%
collect_metrics() %>%

197

filter(.metric == "rmse")

shapes <- c(
"Grid search" = 16,
"Bayesian optimization\n(initial phase)" = 17,
"Bayesian optimization\n(iterations)" = 15,
"Bayesian optimization\n(best model)" = 18

)

ggplot(regular_metrics, aes(x = penalty, y = mixture, z = mean)) +
geom_point(data = df, mapping = aes(shape = "Grid search"),

color = "red", size = 3) +
geom_contour(color = "black", alpha = 0.75, bins = 20) +
geom_point(data = bayes_metrics %>% head(5),

mapping = aes(shape = "Bayesian optimization\n(initial phase)"),
size = 3, color = "#6CABBC") +

geom_point(data = bayes_metrics %>% tail(-5),
mapping = aes(shape = "Bayesian optimization\n(iterations)"),
color = "#226DCE") +

geom_point(
data = model_bayes %>% show_best(n = 1, metric = "rmse"),
mapping = aes(shape = "Bayesian optimization\n(best model)"),
color = "#85db66", size = 3) +

scale_x_log10() +
scale_shape_manual(name = "Tuning method", values = shapes)

198

0.25

0.50

0.75

1.00

0.001 0.010 0.100 1.000
penalty

m
ix

tu
re

Tuning method
Bayesian optimization
(best model)
Bayesian optimization
(initial phase)
Bayesian optimization
(iterations)
Grid search

Figure 14.6: Exploration of parameter space during Bayesian hyperparameter tuning for a
penalized linear regression model.

The plot shows the parameter combinations that were evaluated during the optimization pro-
cess. The contour plot was determined from the validation performance calculated for the
regular grid search. The blue points show the parameter combinations that were evaluated
during the Bayesian hyperparameter optimization. Light blue points were evaluated in the
initial phase, the darker blue points were evaluated in the subsequent iterations. The dark
blue point highlights the best model found during these iterations. The red point shows the
best results from the above grid searches for comparison.

Figure 14.6 clearly shows that the Bayesian hyperparameter optimization fullfills two objec-
tives, exploration by evaluating parameter combinations in areas of the parameter space that
have not been explored before and exploitation by evaluating parameter combinations that
are close to the best parameter combination found so far.

199

INFO Further information

• https://tune.tidymodels.org/ tune package
• https://dials.tidymodels.org/ dials package

There are more packages that extend the capabilities of the tune package.

• finetune package implements iterative methods similar to the Bayesian hyperpa-
rameter optimization approach, e.g. simulated annealing for global optimization

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/model_workflow_tune.png")
library(tidymodels)
mtcars_rec <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors(), num_comp = tune())

model <- nearest_neighbor(mode = "regression", neighbors = tune())
mtcars_workflow <- workflow() %>%
add_recipe(mtcars_rec) %>%
add_model(model)

parameters <- extract_parameter_set_dials(mtcars_workflow)
parameters %>% knitr::kable()
parameters$object[1]
parameters$object[2]
parameters <- parameters %>%
update(

num_comp = num_comp(c(1, 10)),
neighbors = neighbors(c(1, 5)),

)
wf <- workflow() %>%
add_recipe(mtcars_rec) %>%
add_model(rand_forest(mtry = tune(), mode = "regression"))

p <- extract_parameter_set_dials(wf)
p
p$object[[1]]
p <- extract_parameter_set_dials(wf) %>%

200

https://tune.tidymodels.org/
https://dials.tidymodels.org/
https://finetune.tidymodels.org/index.html

finalize(mtcars %>% select(-mpg))
p$object[[1]]
set.seed(123)
tune_results <- tune_grid(mtcars_workflow,
resamples = vfold_cv(mtcars), grid = grid_regular(parameters))

autoplot(tune_results)
collect_metrics(tune_results) %>% head(7)
show_best(tune_results, metric = "rmse")
best_parameters <- select_best(tune_results, metric = "rmse") %>%
select(-.config)

best_parameters
best_workflow <- mtcars_workflow %>%
finalize_workflow(best_parameters) %>%
fit(mtcars)

best_workflow
df <- tibble(
actual = mtcars$mpg,
predicted = predict(best_workflow, new_data = mtcars)$.pred

)

ggplot(df, aes(x = actual, y = predicted)) +
geom_point() +
geom_abline()

knitr::include_graphics("images/tuning-grids.png")
set.seed(123)

recipe <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_numeric_predictors())

model <- linear_reg(mode = "regression", engine = "glmnet",
penalty = tune(), mixture = tune())

wf <- workflow() %>% 1

add_recipe(recipe) %>%
add_model(model)

parameters <- extract_parameter_set_dials(wf) %>% 2

update(
penalty = penalty(c(-3, 0.75))

)
resamples <- vfold_cv(mtcars) 1

model_regular <- tune_grid(wf, resamples = resamples, 2

grid = grid_regular(parameters, levels = 10))
nrandom <- 30
model_random <- tune_grid(wf, resamples = resamples, 3

201

grid = grid_random(parameters, size = nrandom))
model_latin_hypercube <- tune_grid(wf, resamples = resamples,
grid = grid_space_filling(parameters, size = nrandom,

type = "latin_hypercube"))
model_max_entropy <- tune_grid(wf, resamples = resamples,
grid = grid_space_filling(parameters, size = nrandom,

type = "max_entropy"))
df <- rbind(
cbind(grid = "regular", tested = 100,

model_regular %>% show_best(metric = "rmse", n = 1)),
cbind(grid = "random", tested = nrandom,

model_random %>% show_best(metric = "rmse", n = 1)),
cbind(grid = "latin_hypercube", tested = nrandom,

model_latin_hypercube %>% show_best(metric = "rmse", n = 1)),
cbind(grid = "max_entropy", tested = nrandom,

model_max_entropy %>% show_best(metric = "rmse", n = 1))
) %>%
select(-c(.metric, .estimator, n, .config)) %>%
mutate(

grid = factor(grid, levels = c(
"regular", "random", "latin_hypercube", "max_entropy"))

)
df %>%
rename(RMSE = "mean") %>%
mutate_if(is.numeric, format, digits = 3, nsmall = 0) %>%
knitr::kable()

ggplot(df, aes(x = grid, y = mean,
ymin = mean - std_err, ymax = mean + std_err)) +

geom_point() +
geom_pointrange() +
xlab("Method to define grid") + ylab("Mean rmsq error")

model_bayes <- tune_bayes(wf, resamples = resamples,
param_info = parameters, iter = 25)

regular_metrics <- model_regular %>%
collect_metrics() %>%
filter(.metric == "rmse")

bayes_metrics <- model_bayes %>%
collect_metrics() %>%
filter(.metric == "rmse")

shapes <- c(
"Grid search" = 16,

202

"Bayesian optimization\n(initial phase)" = 17,
"Bayesian optimization\n(iterations)" = 15,
"Bayesian optimization\n(best model)" = 18

)

ggplot(regular_metrics, aes(x = penalty, y = mixture, z = mean)) +
geom_point(data = df, mapping = aes(shape = "Grid search"),

color = "red", size = 3) +
geom_contour(color = "black", alpha = 0.75, bins = 20) +
geom_point(data = bayes_metrics %>% head(5),

mapping = aes(shape = "Bayesian optimization\n(initial phase)"),
size = 3, color = "#6CABBC") +

geom_point(data = bayes_metrics %>% tail(-5),
mapping = aes(shape = "Bayesian optimization\n(iterations)"),
color = "#226DCE") +

geom_point(
data = model_bayes %>% show_best(n = 1, metric = "rmse"),
mapping = aes(shape = "Bayesian optimization\n(best model)"),
color = "#85db66", size = 3) +

scale_x_log10() +
scale_shape_manual(name = "Tuning method", values = shapes)

203

15 Model tuning - examples

In the previous chapters, we learned how to define and tune hyperparameters using the tidy-
models packagesdialsandtune‘. In this chapter, we will go deeper into specific areas of model
tuning.

• Feture engineering: introduce non-linearity using polynomial regression, step functions,
and splines

• Regularization: control model complexity using L1, L2, and elasticnet regularization
• Feature selection: select features using random forest variable importance
• Hyperparameter tuning - what to look out for when tuning a model

Figure 15.1 shows how this step fits into the overall model workflow.

Figure 15.1: Model tuning using tune

Load the packages we need for this chapter.

library(tidymodels)
library(tidyverse)
library(patchwork)

204

Because tuning requires training many models, we also enable parallel computing.

library(future)
plan(multisession, workers = parallel::detectCores(logical = FALSE))

15.1 Feature engineering

We already saw in Chapter 14 that preprocessing steps have tunable parameters. The function
tunable() can be used to identify tunable parameters in a recipe. For example, the following
code shows how to identify tunable parameters in a recipe that contains a polynomial step.

tidymodels is very picky about data types and will complain when we
predict on new data if the age value is not an integer. We therefore
convert here age to double
data <- ISLR2::Wage %>%
mutate(age = as.double(age))

recipe(wage ~ age, data = data) %>%
step_poly(hp) %>%
step_discretize(hp) %>%
step_cut(hp, breaks = tune()) %>%
step_bs(hp) %>%
tunable()

A tibble: 5 x 5
name call_info source component component_id
<chr> <list> <chr> <chr> <chr>

1 degree <named list [2]> recipe step_poly poly_eQOaC
2 min_unique <named list [2]> recipe step_discretize discretize_Fsvuk
3 num_breaks <named list [2]> recipe step_discretize discretize_Fsvuk
4 deg_free <named list [3]> recipe step_bs bs_V1IPT
5 degree <named list [3]> recipe step_bs bs_V1IPT

We see that the polynomial step has a tunable parameter degree.

15.1.1 Polynomial regression

With this information, we can tune a polynomial regression model.

205

set.seed(123)
poly_recipe <- recipe(wage ~ age, data = data) %>%
step_poly(age, degree = tune())

model <- linear_reg(mode = "regression") %>%
set_engine("glm")

poly_workflow <- workflow() %>%
add_recipe(poly_recipe) %>%
add_model(model)

tune_results <- tune_grid(poly_workflow, resamples = vfold_cv(data))
tune_results %>% show_best(metric = "rmse")

A tibble: 3 x 7
degree .metric .estimator mean n std_err .config
<int> <chr> <chr> <dbl> <int> <dbl> <chr>

1 3 rmse standard 39.7 10 1.30 Preprocessor2_Model1
2 2 rmse standard 39.8 10 1.30 Preprocessor1_Model1
3 1 rmse standard 40.8 10 1.28 Preprocessor3_Model1

By default, this will tune the polynomial degree from 1 to 3. The best model was with a
quadratic polynomial. We can use the finalize_workflow() function to fit the best model
to the entire data set.

best_parameters <- select_best(tune_results, metric = "rmse")
final_model <- poly_workflow %>%
finalize_workflow(best_parameters) %>%
fit(data)

Figure 15.2 shows the best fit of the polynomial regression model. The shaded area shows
the 95% confidence interval of the fit. The polynomial regression model is a linear model, but
the polynomial step allows us to fit a non-linear relationship between the predictor and the
outcome.

df <- tibble(age = seq(min(data$age), max(data$age), length.out = 100))
df %>%
bind_cols(

predict(final_model, new_data = df),
predict(final_model, new_data = df, type = "conf_int")

) %>%
ggplot(aes(x = age, y = .pred)) +
geom_point(aes(x = age, y = wage), data = data, alpha = 0.1) +
geom_line() +

206

geom_ribbon(aes(ymin = .pred_lower, ymax = .pred_upper), alpha = 0.2) +
labs(x = "Age", y = "Wage")

100

200

300

20 40 60 80
Age

W
ag

e

Figure 15.2: Polynomial regression model

15.1.2 Step function regression

In this section, we develop a model using a step function. The step_discretize() function
is used to convert the age features into bins. The tunable parameter is num_breaks.

set.seed(123)
step_recipe <- recipe(wage ~ age, data = data) %>%
step_discretize(age, num_breaks = tune())

step_workflow <- workflow() %>%
add_recipe(step_recipe) %>%

207

add_model(model)
tune_results <- tune_grid(step_workflow, resamples = vfold_cv(data))
tune_results %>% show_best(metric = "rmse")

A tibble: 5 x 7
num_breaks .metric .estimator mean n std_err .config

<int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 5 rmse standard 40.3 10 1.27 Preprocessor1_Model1
2 4 rmse standard 40.3 10 1.25 Preprocessor4_Model1
3 3 rmse standard 40.6 10 1.26 Preprocessor3_Model1
4 9 rmse standard 40.8 10 1.28 Preprocessor2_Model1
5 7 rmse standard 40.8 10 1.28 Preprocessor5_Model1

Tuning determines that the best model uses 5 bins. We can use the finalize_workflow()
function to fit the best model to the entire data set.

best_parameters <- select_best(tune_results, metric = "rmse")
final_model <- step_workflow %>%
finalize_workflow(best_parameters) %>%
fit(data)

Figure 15.3 shows the best fit of the regression model using a step function.

best_breaks <- (tune_results %>% show_best(metric = "rmse"))$num_breaks[1]
cuts <- tibble(breaks = quantile(data$age,

probs = seq(0, 1, by = 1 / best_breaks)))
df %>%
bind_cols(

predict(final_model, new_data = df),
predict(final_model, new_data = df, type = "conf_int")

) %>%
ggplot(aes(x = age, y = .pred)) +
geom_vline(aes(xintercept = breaks), data = cuts,

color = "darkgreen", alpha = 0.5) +
geom_point(aes(x = age, y = wage), data = data, alpha = 0.1) +
geom_line() +
geom_ribbon(aes(ymin = .pred_lower, ymax = .pred_upper), alpha = 0.2) +
labs(x = "Age", y = "Wage")

208

100

200

300

20 40 60 80
Age

W
ag

e

Figure 15.3: Stepwise regression model; the green lines show the bin boundaries.

The model developed in this section is different from the step function model described in
Sections 7.2 and 7.8.1 of An introduction to statistical learning (James et al. 2021). In the
book, the authors use cut(age, 4) to create a categorical variable with four levels. This leads
to different boundaries than defined by the quantiles that the step_discretize() function
uses. If you want to use defined boundaries, e.g. split into age groups of 10 years, you can
use

step_cut(age, breaks=seq(20, 70, by=10),
include_outside_range=TRUE)

The breaks are however not tunable in this case. Figure 15.4 shows the results of this model.

209

step_recipe <- recipe(wage ~ age, data = data) %>%
step_cut(age, breaks = seq(20, 70, by = 10), include_outside_range = TRUE)

step_workflow <- workflow() %>%
add_recipe(step_recipe) %>%
add_model(model)

trained <- step_workflow %>% fit(data)
cuts <- tibble(breaks = seq(20, 70, by = 10))
df %>%
bind_cols(

predict(trained, new_data = df),
predict(trained, new_data = df, type = "conf_int")

) %>%
ggplot(aes(x = age, y = .pred)) +
geom_vline(aes(xintercept = breaks), data = cuts,

color = "darkgreen", alpha = 0.5) +
geom_point(aes(x = age, y = wage), data = data, alpha = 0.1) +
geom_line() +
geom_ribbon(aes(ymin = .pred_lower, ymax = .pred_upper), alpha = 0.2) +
labs(x = "Age", y = "Wage")

210

100

200

300

20 40 60 80
Age

W
ag

e

Figure 15.4: Stepwise regression model with fixed bin boundaries.

15.1.3 Spline regression

Next we will tune a model using a spline representation for age.

set.seed(123)
spline_recipe <- recipe(wage ~ age, data = data) %>%
step_bs(age, degree = tune(), deg_free = tune())

spline_workflow <- workflow() %>%
add_recipe(spline_recipe) %>%
add_model(model)

tune_results <- tune_grid(spline_workflow, resamples = vfold_cv(data))
tune_results %>% show_best(metric = "rmse")

A tibble: 5 x 8

211

deg_free degree .metric .estimator mean n std_err .config
<int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>

1 8 1 rmse standard 39.7 10 1.28 Preprocessor06_Model1
2 7 2 rmse standard 39.7 10 1.29 Preprocessor05_Model1
3 10 2 rmse standard 39.8 10 1.29 Preprocessor07_Model1
4 11 2 rmse standard 39.8 10 1.29 Preprocessor08_Model1
5 4 1 rmse standard 39.8 10 1.30 Preprocessor03_Model1

best_parameters <- select_best(tune_results, metric = "rmse")
final_model <- spline_workflow %>%
finalize_workflow(best_parameters) %>%
fit(data)

Figure 15.5 shows the best fit of the spline regression model.

df %>%
bind_cols(

predict(final_model, new_data = df),
predict(final_model, new_data = df, type = "conf_int")

) %>%
ggplot(aes(x = age, y = .pred)) +
geom_point(aes(x = age, y = wage), data = data, alpha = 0.1) +
geom_line() +
geom_ribbon(aes(ymin = .pred_lower, ymax = .pred_upper), alpha = 0.2) +
labs(x = "Age", y = "Wage")

212

100

200

300

20 40 60 80
Age

W
ag

e

Figure 15.5: Spline regression model

Other examples of preprocessing steps that can be tuned for feature engineering are:

• step_pca using the num_comp parameter
• step_nzv to remove variables that are highly sparse and unbalanced using the freq_cut

or unique_cut parameters

LIGHTBULB Todo

Compare Figure 15.5 with Figure 15.2. Which one do you prefer? Why?

15.2 Regularization

Regularization is used in several machine learning methods. In general, it is any approach
that controls the complexity of a model. For linear models, there are two common types

213

of regularization. Both control the complexity of the model by penalizing the size of the
coefficients.

L2-regularization (ridge penalty):

Penalty𝐿2(𝛽, 𝜆) = 𝜆
𝑝

∑
𝑗=1

∣𝛽𝑗∣
2 = 𝛽𝑇𝛽

L1-regularization (lasso penalty):

Penalty𝐿1(𝛽, 𝜆) = 𝜆
𝑝

∑
𝑗=1

∣𝛽𝑗∣

Both approaches differ in how they penalize the size of the coefficients. The L2-regularization
penalizes the sum of the squared coefficients, whereas the L1-regularization penalizes the sum
of the absolute values of the coefficients. The added penalty causes the coefficients to shrink
towards zero. The amount of shrinkage is controlled by the regularization parameter 𝜆. The
larger 𝜆, the more the coefficients are shrunk towards zero. Figure 15.6 demonstrates the
difference between the two regularization approaches. In L2 regularization, the coefficients
are shrunk towards zero, but they are may never be exactly zero. In L1 regularization, the
coefficients can be exactly zero. This means that L1 regularization can be used for feature
selection.

Figure 15.6: Contours of the error and constraint functions for lasso (left) and ridge (right)
regularization. The green areas are the constraint regions, |𝛽1| + |𝛽2| ≤ 𝑡 and
𝛽2

1 + 𝛽2
2 ≤ 𝑡2, while the blue ellipses are the contours of the RSS (residual sum

of squares). The optimal coefficients are the points where the ellipses touch the
constraint regions (red).

214

In some cases, it is useful to combine the L1 and L2 regularization. This is called elasticnet
regularization.1 The elasticnet penalty is a weighted combination of the L1 and L2 penalties.
The weight 𝛼 controls the relative contribution of the L1 and L2 penalties. When 𝛼 = 0,
the elasticnet penalty is equivalent to the L2 penalty. When 𝛼 = 1, the elasticnet penalty is
equivalent to the L1 penalty.

𝑃𝑒𝑙𝑎𝑠𝑡𝑖𝑐(𝛽) = 𝛼𝑃𝐿1(𝛽, 𝜆) +
1
2
(1 − 𝛼)𝑃𝐿2𝑃(𝛽, 𝜆)

The glmnet package implements both L1 and L2 regularization as well as the elasticnet penalty.
We’ve already seen in Section 14.4 how we can explore the penalty and mixture hyperpa-
rameters with tidymodels. See Chapter 21 for more details.

15.3 Feature selection

Many text books cover methods like forward and backward stepwise selection and best subset
selection. The authors of tidymodels do not recommended these approaches for feature se-
lection. It’s unlikely that they will add these methods to tidymodels in the future. Instead,
they suggest using regularization, in particular L1 regularization, or other methods. In fact,
they work on a new package called colino that implements several approaches to feature
selection.

The colino package is still in development and is not yet available on CRAN. You can find
the development version on GitHub and install it with the following code.

if (!require(colino)) {
devtools::install_github("stevenpawley/colino", force = TRUE)

}
library(colino)

The methods are all implemented as steps compatible with the recipe package.

LIGHTBULB Todo

Look through the package documentation at https://stevenpawley.github.io/colino/ to
get an overview of the various methods.

The following code shows how to use the step_select_forests() function to select features
based on variable importance derived from a random forest model. The actual model will be
a 𝑘-nearest neighbor model.

1You can find different definitions of elasticnet regularization in the literature. Here, we use the definition
from the glmnet package.

215

https://github.com/stevenpawley/colino
https://stevenpawley.github.io/colino/

set.seed(123)
resamples <- vfold_cv(mtcars)
rec_select <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_numeric_predictors()) %>%
step_select_forests(all_predictors(), outcome = "mpg", top_p = tune())

model <- nearest_neighbor(mode = "regression", neighbors = tune())
mtcars_workflow <- workflow() %>%
add_recipe(rec_select) %>%
add_model(model)

parameters <- extract_parameter_set_dials(mtcars_workflow)
parameters %>% knitr::kable()

nameid source

com-
po-
nent

com-
po-
nent_idobject

neigh-
bors

neigh-
bors

model_specnear-
est_neigh-
bor

maininteger , 1 , 15 , TRUE , TRUE , # Nearest Neighbors

top_ptop_precipestep_se-
lect_forests

se-
lect_forests_iO-
jwA

integer, 1, 4, TRUE, TRUE, # Selected Predictors, function (object, x,
log_vals = FALSE, …) , {, check_param(object), rngs <-
range_get(object, original = FALSE), if
(!is_unknown(rngs𝑢𝑝𝑝𝑒𝑟)), 𝑟𝑒𝑡𝑢𝑟𝑛(𝑜𝑏𝑗𝑒𝑐𝑡),, 𝑥𝑑𝑖𝑚𝑠 <
−𝑑𝑖𝑚(𝑥), 𝑖𝑓(𝑖𝑠.𝑛𝑢𝑙𝑙(𝑥𝑑𝑖𝑚𝑠)), 𝑐𝑙𝑖 ∶∶ 𝑐𝑙𝑖𝑎𝑏𝑜𝑟𝑡("𝐶𝑎𝑛𝑛𝑜𝑡𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑙𝑢𝑚𝑛𝑠.𝐼𝑠.𝑎𝑟𝑔𝑥𝑎2𝐷𝑑𝑎𝑡𝑎𝑜𝑏𝑗𝑒𝑐𝑡?"),, 𝑖𝑓(𝑙𝑜𝑔𝑣𝑎𝑙𝑠), 𝑟𝑛𝑔𝑠[2] < −𝑙𝑜𝑔10(𝑥𝑑𝑖𝑚𝑠[2]),, 𝑒𝑙𝑠𝑒, 𝑟𝑛𝑔𝑠[2] < −𝑥𝑑𝑖𝑚𝑠[2],, 𝑖𝑓(𝑜𝑏𝑗𝑒𝑐𝑡type
== “integer” & is.null(object$trans)) {, rngs <- as.integer(rngs), },
range_set(object, rngs), }

The step_select_forests() function has various tunable parameters. Here, we use top_p,
the number of most important features to keep.

Now we have everything we need to tune the workflow.2

tune_results <- tune_grid(mtcars_workflow,
resamples = resamples,
grid = grid_random(parameters, size = 50))

tune_results %>%
show_best(metric = "rmse") %>%
select(-.config) %>%
knitr::kable()

2I initially ran this code using size=10 for the random grid search. There was a large gap between the
performance of the best model and the other models. This is an indication that the search was not exhaustive
enough.

216

neighbors top_p .metric .estimator mean n std_err

6 4 rmse standard 2.341911 10 0.2005014
8 4 rmse standard 2.494542 10 0.2542292
1 4 rmse standard 2.515561 10 0.2915867
9 4 rmse standard 2.565404 10 0.2747478
3 3 rmse standard 2.588270 10 0.3163073

The best model selected 4 features and 6 for the number of neighbors in the 𝑘-NN model. We
can use the finalize_workflow() function to fit the best model to the entire data set and
visualize the results, see Figure 15.7.

best_parameters <- select_best(tune_results, metric = "rmse")
best_workflow <- mtcars_workflow %>%
finalize_workflow(best_parameters) %>%
fit(mtcars)

mtcars %>%
bind_cols(

predict(best_workflow, new_data = mtcars)
) %>%
ggplot(aes(x = mpg, y = .pred)) +
geom_point() +
geom_abline() +
xlim(10, 35) + ylim(10, 35) +
labs(x = "Observed mpg", y = "Predicted mpg")

217

10

15

20

25

30

35

10 15 20 25 30 35
Observed mpg

P
re

di
ct

ed
 m

pg

Figure 15.7: Feature selection using random forest variable importance

We can also extract the recipe and look at the results from the feature importance.

best_workflow %>%
extract_recipe() %>%
tidy(number = 2, type = "scores")

A tibble: 10 x 3
variable score id
<chr> <dbl> <chr>

1 wt 100 select_forests_iOjwA
2 disp 80.3 select_forests_iOjwA
3 cyl 74.8 select_forests_iOjwA
4 hp 63.8 select_forests_iOjwA
5 carb 12.8 select_forests_iOjwA
6 drat 9.67 select_forests_iOjwA
7 vs 4.65 select_forests_iOjwA
8 qsec 4.37 select_forests_iOjwA
9 am 3.50 select_forests_iOjwA
10 gear 0 select_forests_iOjwA

feature_scores <- best_workflow %>%
extract_recipe() %>%

218

tidy(number = 2, type = "scores")
kept_features <- feature_scores$variable[1:nfeatures]
kept_features

[1] "wt" "disp" "cyl" "hp"

The top-4 features used in the final model are wt, disp, cyl, hp.

15.4 Hyperparameter tuning

We already covered hyperparameter tuning in Chapter 14, so what else could there be said?
Let’s revisit the example from Chapter 13. In that chapter, we compared the performance
of a 𝑘-nearest neighbor model and a logistic regression model to predict the probability of a
customer taking a loan. Comparing the ROC curves showed strange behavior of the 𝑘-NN
model. It’s likely that our model requires further tuning.

15.4.1 Define the hyperparameter search space

Let’s start with loading and preprocessing the data.

file <- "https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"
data <- read_csv(file)
data <- data %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),
levels = c(1, 0)),

Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)

Next we repeat the model training from Chapter 13. We use 10-fold crossvalidation to estimate
the performance of the models.

219

set.seed(1353)
folds <- vfold_cv(data, strata = Personal.Loan)

formula <- Personal.Loan ~ Age + Experience + Income + Family + CCAvg +
Education + Mortgage + Securities.Account + CD.Account +
Online + CreditCard

Train the logistic regression model
logreg_wf <- workflow() %>%
add_model(

logistic_reg() %>% set_engine("glm")
) %>%
add_formula(formula)

logreg_cv <- logreg_wf %>%
fit_resamples(resamples = folds,

control = control_resamples(save_pred = TRUE))
logreg_cv_predictions <- collect_predictions(logreg_cv)

Train the nearest-neighbor model with 5 neighbors
nn5_wf <- workflow() %>%
add_model(nearest_neighbor(neighbors = 5) %>%

set_mode("classification") %>%
set_engine("kknn")) %>%

add_formula(formula)
nn5_cv <- nn5_wf %>%
fit_resamples(resamples = folds,

control = control_resamples(save_pred = TRUE))
nn5_cv_predictions <- collect_predictions(nn5_cv)

Figure 15.10 shows the ROC curves for the logistic regression and the 5-NN model. The logistic
regression model performs better than the 5-NN model. The 5-NN model has a strange shape,
which is likely due to the fact that we did not tune the model.

Let’s tune the model with the default settings

Tune the number of neighbors of the nearest-neighbor model
nn_wf <- workflow() %>%
add_model(nearest_neighbor(neighbors = tune()) %>%

set_mode("classification") %>%
set_engine("kknn")) %>%

add_formula(formula)
nn_default_tune <- tune_grid(nn_wf, resamples = folds)
autoplot(nn_default_tune)

220

roc_auc

brier_class

accuracy

4 8 12

0.960
0.961
0.962
0.963
0.964

0.0275

0.0300

0.0325

0.0350

0.850
0.875
0.900
0.925
0.950

Nearest Neighbors

Figure 15.8: Tuning results for the 𝑘-NN model with default settings

Figure 15.8 shows the results of the tuning process. There are two interesting observations to
point out. First, the selected number of neighbors depends on the metric. If we use accuracy,
the optimal number of neighbors is 5, the same value we used in our initial model. For ROC
AUC, the optimal number of neighbors is 15.

The second observation is that the roc_auc curve has not reached a maximum. This means
that we have not explored the entire parameter space. We can increase the number of neighbors
to explore the parameter space further.

parameters <- extract_parameter_set_dials(nn_wf) %>%
update(neighbors = neighbors(c(1, 100)))

nn_bayes_tune <- tune_bayes(nn_wf, resamples = folds,
param_info = parameters, iter = 25)

autoplot(nn_bayes_tune)

221

roc_auc

brier_class

accuracy

0 25 50 75 100

0.94

0.95

0.96

0.0325

0.0350

0.0375

0.0400

0.0425

0.88

0.92

0.96

Nearest Neighbors

Figure 15.9: Tuning results for the 𝑘-NN model with a larger number of neighbors

optimal_nn_roc <- nn_bayes_tune %>%
select_best(metric = "roc_auc")

This time, the hyperparameter search identified the optimal number of neighbors as 52.

cv_roc <- logreg_cv_predictions %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

nn5_roc <- nn5_cv_predictions %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

nn_default_auc <- nn_wf %>%
finalize_workflow(select_best(nn_default_tune, metric = "roc_auc")) %>%
fit_resamples(resamples = folds,

control = control_resamples(save_pred = TRUE))
nn_default_auc_roc <- nn_default_auc %>%
collect_predictions() %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

nn_bayes_auc <- nn_wf %>%
finalize_workflow(select_best(nn_bayes_tune, metric = "roc_auc")) %>%
fit_resamples(resamples = folds,

control = control_resamples(save_pred = TRUE))

222

nn_bayes_auc_roc <- nn_bayes_auc %>%
collect_predictions() %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

g1 <- ggplot() +
geom_path(data = cv_roc, aes(x = 1 - specificity, y = sensitivity),

color = "gray") +
geom_path(data = nn5_roc,

aes(x = 1 - specificity, y = sensitivity)) +
geom_abline(lty = 2) +
labs(title = "(a) Initial model (accuracy, k=5)")

g2 <- ggplot() +
geom_path(data = cv_roc, aes(x = 1 - specificity, y = sensitivity),

color = "gray") +
geom_path(data = nn_default_auc_roc,

aes(x = 1 - specificity, y = sensitivity)) +
geom_abline(lty = 2) +
labs(title = "(b) Default model (AUC, k=14)")

g3 <- ggplot() +
geom_path(data = cv_roc, aes(x = 1 - specificity, y = sensitivity),

color = "gray") +
geom_path(data = nn_bayes_auc_roc,

aes(x = 1 - specificity, y = sensitivity)) +
geom_abline(lty = 2) +
labs(title = "(c) Optimal model (AUC, k=48)")

g1 + g2 + g3

223

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

(a) Initial model (accuracy, k=5)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

(b) Default model (AUC, k=14)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

(c) Optimal model (AUC, k=48)

Figure 15.10: ROC curves for the logistic regression and the 5-NN model (left) and the tuned
NN model (right)

Comparing the three ROC curves, we see that the fully tuned model, with sufficient explo-
ration of the hyperparameter space, performs better than the initial model across the full data
range.

LIGHTBULB Useful to know

Always check the tuning results using the autoplot function. If the maximum (or mini-
mum) of your metric is not within the defined parameter space, you should increase the
range of the hyperparameters.

Let’s summarize the data in a table and Figure 15.11:

logreg_metrics <- collect_metrics(logreg_cv)
nn5_metrics <- collect_metrics(nn5_cv)
nn_default_metrics <- collect_metrics(nn_default_auc)
nn_bayes_metrics <- collect_metrics(nn_bayes_auc)

df <- bind_rows(
logreg_metrics %>% mutate(model = "Logistic regression"),
nn5_metrics %>% mutate(model = "Nearest neighbor (k=5)"),
nn_default_metrics %>% mutate(model = "Nearest neighbor (k=14)"),
nn_bayes_metrics %>% mutate(model = "Nearest neighbor (k=48)"),

)
df %>%
select(model, mean, .metric) %>%
pivot_wider(names_from = .metric, values_from = mean) %>%
knitr::kable(digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

224

model accuracy brier_class roc_auc

Logistic regression 0.958 0.032 0.961
Nearest neighbor (k=5) 0.965 0.028 0.938
Nearest neighbor (k=14) 0.959 0.030 0.965
Nearest neighbor (k=48) 0.946 0.038 0.978

df %>%
mutate(

model = factor(model,
levels = rev(c(
"Logistic regression",
"Nearest neighbor (k=5)",
"Nearest neighbor (k=14)",
"Nearest neighbor (k=48)"))),

) %>%
ggplot(aes(x = mean, y = model)) +
geom_point() +
geom_pointrange(aes(xmin = mean - std_err, xmax = mean + std_err)) +
facet_wrap(~ .metric, scales = "free_x")

accuracy brier_class roc_auc

0.94 0.95 0.96 0.030 0.035 0.0400.930.940.950.960.970.98

Nearest neighbor (k=48)

Nearest neighbor (k=14)

Nearest neighbor (k=5)

Logistic regression

mean

m
od

el

Figure 15.11: Comparison of the performance metrics for the different models

Tuning the hyperparameters of the 𝑘-NN model improved the ROC AUC to larger value than
the logistic regression. The accuracy on the other hand dropped. However, as we learned
in Chapter 11, accuracy is a performance metric that depends on the threshold used for
classification.

15.4.2 Tune the threshold

Using the methods described in Section 11.1.2, we can tweak the thresholds of the lo-
gistic regression and the best 𝑘-NN model. In the following example, we use model %>%

225

collect_predictions() to use the out-of-fold predictions from cross-validation with the
probably::threshold_perf method.

threshold_graph <- function(model) {
performance <- probably::threshold_perf(

model %>% collect_predictions(),
Personal.Loan, .pred_Yes,
thresholds = seq(0.05, 0.9, 0.01), event_level = "first",
metrics = metric_set(accuracy, kap, bal_accuracy, f_meas)

)
max_values <- performance %>%

arrange(desc(.threshold)) %>%
group_by(.metric) %>%
filter(.estimate == max(.estimate)) %>%
filter(row_number() == 1)

g <- ggplot(performance,
aes(x = .threshold, y = .estimate, color = .metric)) +
geom_line() +
geom_vline(data = max_values,
aes(xintercept = .threshold, color = .metric)) +

scale_x_continuous(breaks = seq(0, 1, 0.1)) +
coord_cartesian(ylim = c(0.5, 1)) +
xlab("Threshold") + ylab("Metric value") +
theme(legend.position = "inside",
legend.position.inside = c(0.85, 0.75))

return(g)
}
g1 <- threshold_graph(logreg_cv) +
labs(title = "Logistic regression model")

g2 <- threshold_graph(nn_bayes_auc) +
labs(title = "k-nearest neighbor model")

g1 + g2

226

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

M
et

ric
 v

al
ue

.metric

accuracy

bal_accuracy

f_meas

kap

Logistic regression model

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

M
et

ric
 v

al
ue

.metric

accuracy

bal_accuracy

f_meas

kap

k−nearest neighbor model

Figure 15.12: Metric values for different thresholds of the logistic regression and the 𝑘-NN
model

Figure 15.12 shows the performance of the logistic regression and the 𝑘-NN model for different
thresholds. For all metrics, the threshold dependent maxima are higher for 𝑘-NN compared
to logistic regression.

LIGHTBULB Useful to know

In this section, we learned that it is important to:

• sufficiently explore the hyperparameter space
• use the right metric for model selection (ROC)
• select the threshold after you identified the best model

15.5 The one-standard-error rule

Breiman et al (Breiman et al. 1984) suggested that instead of selecting the best model, we
should select the simplest model within one standard error of the best model. This is called
the one-standard-error rule. The idea is that the best model is likely to be overfitted and that
a simpler model is likely to generalize better.

Let’s demonstrate this with a ridge regression model to predict mpg in the mtcars dataset.
First tune the model with a suitable range for the penalty parameter.

set.seed(123)
resamples <- vfold_cv(mtcars)
rec <- recipe(mpg ~ ., data = mtcars)

227

spec <- linear_reg(mode = "regression", penalty = tune(), mixture = 0) %>%
set_engine("glmnet")

wf <- workflow() %>%
add_recipe(rec) %>%
add_model(spec)

parameters <- extract_parameter_set_dials(wf) %>%
update(penalty = penalty(c(-2, 2)))

tune_results <- tune_grid(wf,
resamples = resamples,
grid = grid_regular(parameters, levels = 50))

The one-standard-error rule is implemented in the select_by_one_std_err() function. It is
used in a similar way to the select_best function.

penalty_best <- select_best(tune_results, metric = "rmse")
penalty_1se <- select_by_one_std_err(tune_results, desc(penalty),
metric = "rmse")

The implementation doesn’t know what a simpler model is, so we need to tell it. In this case,
we use the penalty parameter as a proxy for model complexity and inform the model that the
complexity decreases with the penalty value.

Figure 15.13 shows the results. The best model is the one with the lowest RMSE. The one-
standard-error rule adds one standard error to the minimum and then moves horizontally to
the right until it crosses the curve. The penalty value to the left of the crossing is the selected
parameter.

penalty_best <- show_best(tune_results, metric = "rmse", n = 1)
tune_results %>%
collect_metrics() %>%
filter(.metric == "rmse") %>%
ggplot(aes(x = penalty, y = mean,

ymax = mean + std_err, ymin = mean - std_err)) +
geom_line() +
geom_errorbar(color = "grey") +
geom_point() +
scale_x_log10() +
coord_cartesian(ylim = c(2, 4)) +
geom_vline(xintercept = penalty_best$penalty[1], color = "blue") +
geom_vline(xintercept = penalty_1se$penalty[1], color = "red") +
geom_hline(yintercept = penalty_best$mean[1] + penalty_best$std_err[1],

color = "blue")

228

2.0

2.5

3.0

3.5

4.0

1e−02 1e−01 1e+00 1e+01 1e+02
penalty

m
ea

n

Figure 15.13: Tuning results for ridge regression model to predict mpg with the one-standard-
error rule selection of penalty; the best penalty value is indicated by the blue
line and the one-standard-error penalty value is indicated by the red line; the
horizontal blue line demonstrates the rule.

The one-standard-error rule can only be applied if it is obvious how model complexity changes
with an hyperparameter. In the example above, we used the penalty parameter as a proxy
for model complexity. However, this is not always the case. For example, in a random forest
model, the number of trees is not necessarily a good proxy for model complexity. In such
cases, it is not clear how to apply the one-standard-error rule.

INFO Further information

• https://dials.tidymodels.org/ dials package
• https://stevenpawley.github.io/colino/ colino package

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/model_workflow_tune.png")

229

https://dials.tidymodels.org/
https://stevenpawley.github.io/colino/

library(tidymodels)
library(tidyverse)
library(patchwork)
library(future)
plan(multisession, workers = parallel::detectCores(logical = FALSE))
tidymodels is very picky about data types and will complain when we
predict on new data if the age value is not an integer. We therefore
convert here age to double
data <- ISLR2::Wage %>%
mutate(age = as.double(age))

recipe(wage ~ age, data = data) %>%
step_poly(hp) %>%
step_discretize(hp) %>%
step_cut(hp, breaks = tune()) %>%
step_bs(hp) %>%
tunable()

set.seed(123)
poly_recipe <- recipe(wage ~ age, data = data) %>%
step_poly(age, degree = tune())

model <- linear_reg(mode = "regression") %>%
set_engine("glm")

poly_workflow <- workflow() %>%
add_recipe(poly_recipe) %>%
add_model(model)

tune_results <- tune_grid(poly_workflow, resamples = vfold_cv(data))
tune_results %>% show_best(metric = "rmse")
best_parameters <- select_best(tune_results, metric = "rmse")
final_model <- poly_workflow %>%
finalize_workflow(best_parameters) %>%
fit(data)

df <- tibble(age = seq(min(data$age), max(data$age), length.out = 100))
df %>%
bind_cols(

predict(final_model, new_data = df),
predict(final_model, new_data = df, type = "conf_int")

) %>%
ggplot(aes(x = age, y = .pred)) +
geom_point(aes(x = age, y = wage), data = data, alpha = 0.1) +
geom_line() +
geom_ribbon(aes(ymin = .pred_lower, ymax = .pred_upper), alpha = 0.2) +
labs(x = "Age", y = "Wage")

230

set.seed(123)
step_recipe <- recipe(wage ~ age, data = data) %>%
step_discretize(age, num_breaks = tune())

step_workflow <- workflow() %>%
add_recipe(step_recipe) %>%
add_model(model)

tune_results <- tune_grid(step_workflow, resamples = vfold_cv(data))
tune_results %>% show_best(metric = "rmse")
best_breaks <- (tune_results %>% show_best(metric = "rmse"))$num_breaks[1]
best_parameters <- select_best(tune_results, metric = "rmse")
final_model <- step_workflow %>%
finalize_workflow(best_parameters) %>%
fit(data)

best_breaks <- (tune_results %>% show_best(metric = "rmse"))$num_breaks[1]
cuts <- tibble(breaks = quantile(data$age,

probs = seq(0, 1, by = 1 / best_breaks)))
df %>%
bind_cols(

predict(final_model, new_data = df),
predict(final_model, new_data = df, type = "conf_int")

) %>%
ggplot(aes(x = age, y = .pred)) +
geom_vline(aes(xintercept = breaks), data = cuts,

color = "darkgreen", alpha = 0.5) +
geom_point(aes(x = age, y = wage), data = data, alpha = 0.1) +
geom_line() +
geom_ribbon(aes(ymin = .pred_lower, ymax = .pred_upper), alpha = 0.2) +
labs(x = "Age", y = "Wage")

step_recipe <- recipe(wage ~ age, data = data) %>%
step_cut(age, breaks = seq(20, 70, by = 10), include_outside_range = TRUE)

step_workflow <- workflow() %>%
add_recipe(step_recipe) %>%
add_model(model)

trained <- step_workflow %>% fit(data)
cuts <- tibble(breaks = seq(20, 70, by = 10))
df %>%
bind_cols(

predict(trained, new_data = df),
predict(trained, new_data = df, type = "conf_int")

) %>%
ggplot(aes(x = age, y = .pred)) +
geom_vline(aes(xintercept = breaks), data = cuts,

231

color = "darkgreen", alpha = 0.5) +
geom_point(aes(x = age, y = wage), data = data, alpha = 0.1) +
geom_line() +
geom_ribbon(aes(ymin = .pred_lower, ymax = .pred_upper), alpha = 0.2) +
labs(x = "Age", y = "Wage")

set.seed(123)
spline_recipe <- recipe(wage ~ age, data = data) %>%
step_bs(age, degree = tune(), deg_free = tune())

spline_workflow <- workflow() %>%
add_recipe(spline_recipe) %>%
add_model(model)

tune_results <- tune_grid(spline_workflow, resamples = vfold_cv(data))
tune_results %>% show_best(metric = "rmse")
best_parameters <- select_best(tune_results, metric = "rmse")
final_model <- spline_workflow %>%
finalize_workflow(best_parameters) %>%
fit(data)

df %>%
bind_cols(

predict(final_model, new_data = df),
predict(final_model, new_data = df, type = "conf_int")

) %>%
ggplot(aes(x = age, y = .pred)) +
geom_point(aes(x = age, y = wage), data = data, alpha = 0.1) +
geom_line() +
geom_ribbon(aes(ymin = .pred_lower, ymax = .pred_upper), alpha = 0.2) +
labs(x = "Age", y = "Wage")

knitr::include_graphics("images/regularization.png")
if (!require(colino)) {
devtools::install_github("stevenpawley/colino", force = TRUE)

}
library(colino)
set.seed(123)
resamples <- vfold_cv(mtcars)
rec_select <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_numeric_predictors()) %>%
step_select_forests(all_predictors(), outcome = "mpg", top_p = tune())

model <- nearest_neighbor(mode = "regression", neighbors = tune())
mtcars_workflow <- workflow() %>%
add_recipe(rec_select) %>%
add_model(model)

parameters <- extract_parameter_set_dials(mtcars_workflow)

232

parameters %>% knitr::kable()
tune_results <- tune_grid(mtcars_workflow,
resamples = resamples,
grid = grid_random(parameters, size = 50))

tune_results %>%
show_best(metric = "rmse") %>%
select(-.config) %>%
knitr::kable()

nfeatures <- (tune_results %>% show_best(metric = "rmse"))$top_p[1]
nneighbors <- (tune_results %>% show_best(metric = "rmse"))$neighbors[1]
best_parameters <- select_best(tune_results, metric = "rmse")
best_workflow <- mtcars_workflow %>%
finalize_workflow(best_parameters) %>%
fit(mtcars)

mtcars %>%
bind_cols(

predict(best_workflow, new_data = mtcars)
) %>%
ggplot(aes(x = mpg, y = .pred)) +
geom_point() +
geom_abline() +
xlim(10, 35) + ylim(10, 35) +
labs(x = "Observed mpg", y = "Predicted mpg")

best_workflow %>%
extract_recipe() %>%
tidy(number = 2, type = "scores")

feature_scores <- best_workflow %>%
extract_recipe() %>%
tidy(number = 2, type = "scores")

kept_features <- feature_scores$variable[1:nfeatures]
kept_features
file <- "https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"
data <- read_csv(file)
data <- data %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),

233

levels = c(1, 0)),
Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)
set.seed(1353)
folds <- vfold_cv(data, strata = Personal.Loan)

formula <- Personal.Loan ~ Age + Experience + Income + Family + CCAvg +
Education + Mortgage + Securities.Account + CD.Account +
Online + CreditCard

Train the logistic regression model
logreg_wf <- workflow() %>%
add_model(

logistic_reg() %>% set_engine("glm")
) %>%
add_formula(formula)

logreg_cv <- logreg_wf %>%
fit_resamples(resamples = folds,

control = control_resamples(save_pred = TRUE))
logreg_cv_predictions <- collect_predictions(logreg_cv)

Train the nearest-neighbor model with 5 neighbors
nn5_wf <- workflow() %>%
add_model(nearest_neighbor(neighbors = 5) %>%

set_mode("classification") %>%
set_engine("kknn")) %>%

add_formula(formula)
nn5_cv <- nn5_wf %>%
fit_resamples(resamples = folds,

control = control_resamples(save_pred = TRUE))
nn5_cv_predictions <- collect_predictions(nn5_cv)
Tune the number of neighbors of the nearest-neighbor model
nn_wf <- workflow() %>%
add_model(nearest_neighbor(neighbors = tune()) %>%

set_mode("classification") %>%
set_engine("kknn")) %>%

add_formula(formula)
nn_default_tune <- tune_grid(nn_wf, resamples = folds)
autoplot(nn_default_tune)
best_nn_roc <- nn_default_tune %>%
select_best(metric = "roc_auc")

234

best_nn_accuracy <- nn_default_tune %>%
select_best(metric = "accuracy")

parameters <- extract_parameter_set_dials(nn_wf) %>%
update(neighbors = neighbors(c(1, 100)))

nn_bayes_tune <- tune_bayes(nn_wf, resamples = folds,
param_info = parameters, iter = 25)

autoplot(nn_bayes_tune)
optimal_nn_roc <- nn_bayes_tune %>%
select_best(metric = "roc_auc")

cv_roc <- logreg_cv_predictions %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

nn5_roc <- nn5_cv_predictions %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

nn_default_auc <- nn_wf %>%
finalize_workflow(select_best(nn_default_tune, metric = "roc_auc")) %>%
fit_resamples(resamples = folds,

control = control_resamples(save_pred = TRUE))
nn_default_auc_roc <- nn_default_auc %>%
collect_predictions() %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

nn_bayes_auc <- nn_wf %>%
finalize_workflow(select_best(nn_bayes_tune, metric = "roc_auc")) %>%
fit_resamples(resamples = folds,

control = control_resamples(save_pred = TRUE))
nn_bayes_auc_roc <- nn_bayes_auc %>%
collect_predictions() %>%
roc_curve(truth = Personal.Loan, .pred_Yes, event_level = "first")

g1 <- ggplot() +
geom_path(data = cv_roc, aes(x = 1 - specificity, y = sensitivity),

color = "gray") +
geom_path(data = nn5_roc,

aes(x = 1 - specificity, y = sensitivity)) +
geom_abline(lty = 2) +
labs(title = "(a) Initial model (accuracy, k=5)")

g2 <- ggplot() +
geom_path(data = cv_roc, aes(x = 1 - specificity, y = sensitivity),

color = "gray") +

235

geom_path(data = nn_default_auc_roc,
aes(x = 1 - specificity, y = sensitivity)) +

geom_abline(lty = 2) +
labs(title = "(b) Default model (AUC, k=14)")

g3 <- ggplot() +
geom_path(data = cv_roc, aes(x = 1 - specificity, y = sensitivity),

color = "gray") +
geom_path(data = nn_bayes_auc_roc,

aes(x = 1 - specificity, y = sensitivity)) +
geom_abline(lty = 2) +
labs(title = "(c) Optimal model (AUC, k=48)")

g1 + g2 + g3
logreg_metrics <- collect_metrics(logreg_cv)
nn5_metrics <- collect_metrics(nn5_cv)
nn_default_metrics <- collect_metrics(nn_default_auc)
nn_bayes_metrics <- collect_metrics(nn_bayes_auc)

df <- bind_rows(
logreg_metrics %>% mutate(model = "Logistic regression"),
nn5_metrics %>% mutate(model = "Nearest neighbor (k=5)"),
nn_default_metrics %>% mutate(model = "Nearest neighbor (k=14)"),
nn_bayes_metrics %>% mutate(model = "Nearest neighbor (k=48)"),

)
df %>%
select(model, mean, .metric) %>%
pivot_wider(names_from = .metric, values_from = mean) %>%
knitr::kable(digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

df %>%
mutate(

model = factor(model,
levels = rev(c(
"Logistic regression",
"Nearest neighbor (k=5)",
"Nearest neighbor (k=14)",
"Nearest neighbor (k=48)"))),

) %>%
ggplot(aes(x = mean, y = model)) +
geom_point() +
geom_pointrange(aes(xmin = mean - std_err, xmax = mean + std_err)) +

236

facet_wrap(~ .metric, scales = "free_x")
threshold_graph <- function(model) {
performance <- probably::threshold_perf(

model %>% collect_predictions(),
Personal.Loan, .pred_Yes,
thresholds = seq(0.05, 0.9, 0.01), event_level = "first",
metrics = metric_set(accuracy, kap, bal_accuracy, f_meas)

)
max_values <- performance %>%

arrange(desc(.threshold)) %>%
group_by(.metric) %>%
filter(.estimate == max(.estimate)) %>%
filter(row_number() == 1)

g <- ggplot(performance,
aes(x = .threshold, y = .estimate, color = .metric)) +
geom_line() +
geom_vline(data = max_values,
aes(xintercept = .threshold, color = .metric)) +

scale_x_continuous(breaks = seq(0, 1, 0.1)) +
coord_cartesian(ylim = c(0.5, 1)) +
xlab("Threshold") + ylab("Metric value") +
theme(legend.position = "inside",
legend.position.inside = c(0.85, 0.75))

return(g)
}
g1 <- threshold_graph(logreg_cv) +
labs(title = "Logistic regression model")

g2 <- threshold_graph(nn_bayes_auc) +
labs(title = "k-nearest neighbor model")

g1 + g2
set.seed(123)
resamples <- vfold_cv(mtcars)
rec <- recipe(mpg ~ ., data = mtcars)
spec <- linear_reg(mode = "regression", penalty = tune(), mixture = 0) %>%
set_engine("glmnet")

wf <- workflow() %>%
add_recipe(rec) %>%
add_model(spec)

parameters <- extract_parameter_set_dials(wf) %>%
update(penalty = penalty(c(-2, 2)))

tune_results <- tune_grid(wf,

237

resamples = resamples,
grid = grid_regular(parameters, levels = 50))

penalty_best <- select_best(tune_results, metric = "rmse")
penalty_1se <- select_by_one_std_err(tune_results, desc(penalty),
metric = "rmse")

penalty_best <- show_best(tune_results, metric = "rmse", n = 1)
tune_results %>%
collect_metrics() %>%
filter(.metric == "rmse") %>%
ggplot(aes(x = penalty, y = mean,

ymax = mean + std_err, ymin = mean - std_err)) +
geom_line() +
geom_errorbar(color = "grey") +
geom_point() +
scale_x_log10() +
coord_cartesian(ylim = c(2, 4)) +
geom_vline(xintercept = penalty_best$penalty[1], color = "blue") +
geom_vline(xintercept = penalty_1se$penalty[1], color = "red") +
geom_hline(yintercept = penalty_best$mean[1] + penalty_best$std_err[1],

color = "blue")

238

16 Stacking models

Boosting or bagging combines a series of models in ensembles to achieve a model performance
of the ensemble that is better than the performance of individual models. Prominent examples
are RandomForest or xgboost. In all of these cases, the individual models are of the same
type, e.g. decision trees (see Section A.10, Section A.11, Section A.12).

Stacking is a similar concept that goes back to Wolpert (Wolpert 1992) who introduced the
idea of stacked generalizations. A set of base models is combined using a meta-model that is
trained to find the optimal combination of the base models. The models can (and should) be
highly divers.

Figure 16.1: Concept of stacking Models

239

Figure 16.1 shows the concept of stacking. The base models are trained on the training data.
The predictions of the base models are then used as input for the meta-model. The meta-
model is trained on the training data and the predictions of the base models. The meta-model
then combines the predictions of the base models to make the final prediction. Ideally, the
meta-model uses some form of constraints that leads to selection of a subset of the candidate
members.

There are many ways to implement stacking. In the tidymodels ecosystem, stacking is available
using the stacks package. The stacks package uses L1 regularization to select the best
combination of base models.

LIGHTBULB Todo

Read the articles on https://stacks.tidymodels.org/ to learn how to use the stacks pack-
age for

• regression and
• classification.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

knitr::include_graphics("images/stacking-concept.png")

240

https://stacks.tidymodels.org/
https://stacks.tidymodels.org/articles/basics.html
https://stacks.tidymodels.org/articles/classification.html

17 Model deployment

Building and training a model is only the first step in the lifecycle of a machine learning
application. The next step is to deploy the model into production. This is the process of
integrating the model into an existing production environment, so that it can be used to make
predictions on new data.

There are many different ways of deploying a model and it very much depends on the infras-
tructure of your organization.

Figure 17.1: Modeling workflow

17.1 Model packaging and infrastructure

Probably the most important aspect of model deployment is to ensure that the model can
be easily deployed and maintained in production. Using containers (e.g., Docker) can help to
package the model with its dependencies and ensure consistency across environments.

241

Once you have a containerized model, you can easily deploy it on the most appropriate hard-
ware. Try to use configuration tools like Kubernetes to manage the deployment and scaling
of your model. This allows you to easily scale up or down based on demand and ensures that
your model is always available to users. It also simplifies the process of updating the model.

An interesting approach to model packaging is to convert the model into the ONNX format
(Open Neural Network Exchange). ONNX is an open format for representing machine learning
models. It allows you to describe models in a common format that can be deployed on various
platforms. You can for example load a model in ONNX format into the browser and access
it easily from a web application. While there is basic support for ONNX in R, it is easier to
develop the model in Python using scikit-learn and then convert it to ONNX format using
the skl2onnx package.

17.2 Deployment Strategies

Consider if your model needs to provide predictions in real-time or if it can be used in batch
mode. Real-time deployment requires the model to be available via an API and to provide
predictions with low latency. Batch deployment, on the other hand, allows for more complex
models and longer processing times, as predictions are made on a scheduled basis.

17.3 Monitoring and maintenance (post-deployment)

Once the model is deployed, the work is not over. You need to monitor the model’s performance
in production and maintain it over time. If new data becomes available, you may need to
retrain the model to ensure that it continues to perform well.

Aim to continuously record performance metrics and monitor model degradation. The best
way to do this is to setup an automated pipeline that retrains the model continuously and
deploys the new model whenever it is beneficial.

17.4 R: the vetiver package

The vetiver package provides basic functionality to

• version and publish models
• deploy models into production
• monitor models in production

242

https://onnx.ai/

The documentation for vetiver takes you through the steps of deploying a model into pro-
duction. You can find the documentation at https://vetiver.rstudio.com/.

To learn more about deploying models, look for resources on MLOps.

243

https://vetiver.rstudio.com/

Part VI

Unsupervised learning

244

18 Dimensionality reduction

Load the packages we need for this chapter.

library(tidymodels)
library(embed)
library(GGally)
library(ggrepel)
library(kernlab)
library(dimRed)
library(RANN)

Load the penguin dataset.

penguins <- modeldata::penguins %>% drop_na()

18.1 Principal component analysis (PCA)

The recipes and embed packages have several implementations of principal component anal-
ysis (PCA).

• step_pca: classical PCA analysis that calculates all principal components
• step_pca_truncated: classical PCA analysis that calculates only the requested number

of components
• step_pca_sparse: in PCA all predictors contribute to the principal components and

will have non-zero coefficients; sparse PCA can produce principal components where not
all predictors contribute (zero coefficients)

18.1.1 PCA

The step_pca (or step_pca_truncted) function converts numeric predictors to principal com-
ponents as part of a recipe. We first define the recipe and then use prep and bake to get the
transformed data.

245

pca_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

penguins_pca <- pca_rec %>%
prep() %>%
bake(new_data = NULL)

Figure 18.1 shows the first two principal components. We can see that the gentoo species is
well separated from the other two by the first principal component. A combination of the first
and second principal component separates chinstrap and adelie with some overlap.

penguins_pca %>%
ggplot(aes(x = PC1, y = PC2, color = species, shape = species)) +
geom_point()

−2

−1

0

1

2

−2 0 2 4
PC1

P
C

2

species

Adelie

Chinstrap

Gentoo

Figure 18.1: First two principal components of the penguin dataset. Points are colored by
species

The step_pca function labels the principal components by default using PC1 for the first
principal component, PC2 for the second, and so on; this is a common convention.

246

A PCA analysis usually also includes looking at the variance of the original dataset explained
by the principal components. You have two options to extract this information from the
prep-ed recipe. The first accesses the fitted PCA model from prcomp.

prep_pca_rec <- pca_rec %>% prep()

Access the object from the underlying engine
summary(prep_pca_rec$steps[[2]]$res)

Importance of components:
PC1 PC2 PC3 PC4

Standard deviation 1.6569 0.8821 0.60716 0.32846
Proportion of Variance 0.6863 0.1945 0.09216 0.02697
Cumulative Proportion 0.6863 0.8809 0.97303 1.00000

While this is a reasonable approach, you might want to use the actual values for visualizations.
In this case, we can use the tidy function. Figure 18.2 shows a scree plot created using these
data.

explained_variance <- tidy((pca_rec %>% prep())$steps[[2]],
type = "variance")

perc_variance <- explained_variance %>%
filter(terms == "percent variance")

cum_perc_variance <- explained_variance %>%
filter(terms == "cumulative percent variance")

ggplot(explained_variance, aes(x = component, y = value)) +
geom_bar(data = perc_variance, stat = "identity") +
geom_line(data = cum_perc_variance) +
geom_point(data = cum_perc_variance, size = 2) +
labs(x = "Principal component", y = "Percent variance")

247

0

25

50

75

100

1 2 3 4
Principal component

P
er

ce
nt

 v
ar

ia
nc

e

Figure 18.2: Scree plot

Another informative graph is a biplot.

pca <- pca_rec %>%
prep()

loadings <- tidy(pca$steps[[2]], type = "coef") %>%
pivot_wider(id_cols = "terms", names_from = "component",

values_from = "value")
scale <- 4
penguins_pca %>%
ggplot(aes(x = PC1, y = PC2)) +
geom_point(aes(color = species, shape = species)) +
geom_segment(data = loadings,

aes(xend = scale * PC1, yend = scale * PC2, x = 0, y = 0),
arrow = arrow(length = unit(0.15, "cm"))) +

geom_label_repel(data = loadings,
aes(x = scale * PC1, y = scale * PC2, label = terms),
hjust = "left", size = 2)

248

bill_length_mm

bill_depth_mm

flipper_length_mm

body_mass_g

−3

−2

−1

0

1

2

−2 0 2 4
PC1

P
C

2

species

Adelie

Chinstrap

Gentoo

Figure 18.3: Biplot of the penguin dataset. The loadings are shown as arrows and the original
variables as labels. For clarity, loadings were multipled by 4

The biplot in Figure 18.3 shows the PCA loadings, the cofficients of the linear combination
of the original variables, overlaid onto the scatterplot of the transformed data. The loadings
are shown as arrows and tell us that PC1 is mainly a linear combination of flipper length and
body mass. PC2 is almost exclusively a linear combination of bill measurements.

18.1.2 Truncated PCA

Truncated PCA can be used if not all the components are needed. The result is identical to the
normal PCA (see Figure 18.4). It is particularly useful for larger datasets as the computation
will be faster.

pca_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca_truncated(all_numeric_predictors(), num_comp = 2)

penguins_pca <- pca_rec %>%
prep() %>%
bake(new_data = NULL)

249

penguins_pca %>%
ggplot(aes(x = PC1, y = PC2, color = species, shape = species)) +
geom_point()

−2

−1

0

1

2

−2 0 2 4
PC1

P
C

2

species

Adelie

Chinstrap

Gentoo

Figure 18.4: First two principal components of the penguin dataset determined using truncated
PCA

18.1.3 Sparse principal component analysis (SPCA)

Even though PCA is independent of the dimensionality, high-dimensional datasets lead to
principal components where each principal component is a linear combination of all the original
variables. This makes it difficult to interpret the principal components. Sparse PCA is a
method that creates principal components with sparse loadings. This is similar to what is
happening in LASSO regression due to the L1 regularization. In fact, the sparse PCA problem
can be reformulated as a LASSO problem (Zou, Hastie, and Tibshirani 2006).

The step_pca_sparse function from the embed package implements sparse PCA and can
be used as a drop-in replacement for step_pca (see https://embed.tidymodels.org/reference/
step_pca_sparse.html)

250

https://embed.tidymodels.org/reference/step_pca_sparse.html
https://embed.tidymodels.org/reference/step_pca_sparse.html

18.2 Kernel PCA

Kernel PCA is a non-linear extension of PCA. It uses a kernel function to map the data into
a higher-dimensional space where it is linearly separable. The kernel PCA is then performed
in this higher-dimensional space. The recipes package has a step_kpca function that can be
used to perform kernel PCA. It’s used in the same way as step_pca.

kpca_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_kpca(all_numeric_predictors(), num_comp = 2)

penguins_kpca <- kpca_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_kpca %>%
ggplot(aes(x = kPC1, y = kPC2, color = species, shape = species)) +
geom_point()

−10

−5

0

5

10

−10 −5 0 5 10 15
kPC1

kP
C

2

species

Adelie

Chinstrap

Gentoo

Figure 18.5: First two principal components of the penguin dataset determined using kernel
PCA (default settings)

251

Figure 18.5 shows the resulting projection. In comparison to the linear PCA, the adelie and
chinstrap species are better separated. The gentoo species is still well separated from the other
two and more compact. To differentiate the kernel PCA result from PCA result, step_kpca
labels the components using kPC1, kPC2, and so on. You can change the label prefix using the
prefix argument.

The default for kernel PCA is to use the radial basis function (RBF) kernel. The step_kpca
function has several other kernels implemented; see the kernlab package for more details.
Figure 18.6 shows the resulting projection for kPCA using the polynomial kernel with degree
2. The projection is worse than the RBF kernel.

kpca_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_kpca(all_numeric_predictors(), num_comp = 2,

options = list(kernel = "polydot", kpar = list(degree = 2)))

penguins_kpca <- kpca_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_kpca %>%
ggplot(aes(x = kPC1, y = kPC2, color = species, shape = species)) +
geom_point()

252

−150

−100

−50

0

50

0 100 200
kPC1

kP
C

2

species

Adelie

Chinstrap

Gentoo

Figure 18.6: First two principal components of the penguin dataset determined using kernel
PCA (polynomial kernel with degree 2)

18.3 UMAP

UMAP is a non-linear dimensionality reduction technique that is based on manifold learning.
It is similar to t-SNE but is faster and can be used for larger datasets. UMAP also has the
advantage over t-SNE that it allows to project new data points into the existing projection.

The embed package has a step_umap function that can be used to perform UMAP in a recipe.
The projection creates new variables called UMAP1, UMAP2, etc. Figure 18.7 shows the resulting
projection. The adelie and chinstrap species are well separated. The gentoo species is still well
separated from the other two and more compact.

umap_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_umap(all_numeric_predictors(), num_comp = 2)

penguins_umap <- umap_rec %>%
prep() %>%
bake(new_data = NULL)

253

penguins_umap %>%
ggplot(aes(x = UMAP1, y = UMAP2, color = species, shape = species)) +
geom_point()

−4

0

4

−5 0 5 10
UMAP1

U
M

A
P

2

species

Adelie

Chinstrap

Gentoo

Figure 18.7: UMAP projection of the penguin dataset onto two dimensions (default settings)

UMAP has several parameters that can be tuned. The min_dist (default 0.01) parameter
controls how tightly the clusters are packed. Increasing the value leads to looser clusters
Figure 18.8 shows the projection with min_dist=0.5. It is a good idea to explore the effect of
the min_dist parameter on the projection.

umap_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_umap(all_numeric_predictors(), num_comp = 2,

min_dist = 0.5)

penguins_umap <- umap_rec %>%
prep() %>%
bake(new_data = NULL)

254

penguins_umap %>%
ggplot(aes(x = UMAP1, y = UMAP2, color = species, shape = species)) +
geom_point()

−5.0

−2.5

0.0

2.5

5.0

−5 0 5 10
UMAP1

U
M

A
P

2

species

Adelie

Chinstrap

Gentoo

Figure 18.8: UMAP projection of the penguin dataset onto two dimensions (min_dist=0.5)

18.4 Isomap (multi-dimensional scaling, MDS)

Multi-dimensional scaling (MDS) is a family of dimensionality reduction techniques that tries
to preserve the distances between the data points. Isomap is a version of MDS that uses nearest
neighbors information to construct a network of neighbouring points and use this network to
define a geodesic distance. which is then used in the mapping

The recipes package has a step_isomap function that can be used to perform Isomap in a
recipe. The projection creates new variables called Isomap1, Isomap2, etc. Figure 18.9 shows
the resulting projection.

isomap_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_isomap(all_numeric_predictors(), num_terms = 2, neighbors = 100)

255

penguins_isomap <- isomap_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_isomap %>%
ggplot(aes(x = Isomap1, y = Isomap2, color = species, shape = species)) +
geom_point()

−2

0

2

4

−5.0 −2.5 0.0 2.5 5.0
Isomap1

Is
om

ap
2

species

Adelie

Chinstrap

Gentoo

Figure 18.9: Isomap projection of the penguin dataset onto two dimensions (default settings)

18.5 Partial Least Squares (PLS)

Partial Least Squares (PLS) was developed initialy not as a dimensionality reduction technique
but as a regression technique. It is similar to PCA but instead of maximizing the variance of the
principal components, it maximizes the covariance between the predictors and the response.
The recipes package has a step_pls function that can be used to perform PLS in a recipe.
The projection creates new variables called PLS1, PLS2, etc.

256

data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

pls_rec <- recipe(data = data, formula = formula) %>%
step_normalize(all_numeric_predictors()) %>%
step_pls(all_numeric_predictors(), outcome = "mpg", num_comp = 2)

mtcars_pls <- pls_rec %>%
prep() %>%
bake(new_data = NULL)

mtcars_pls %>%
ggplot(aes(x = PLS1, y = PLS2, color = mpg, size = mpg)) +
geom_point()

−2

−1

0

1

2

−2 0 2
PLS1

P
LS

2

mpg

15

20

25

30

mpg

15

20

25

30

Figure 18.10: PLS projection of the penguin dataset onto two dimensions (default settings)

257

Figure 18.10 shows the resulting projection. We can see that PLS1 correlates well with the
outcome.

INFO Further information

• https://recipes.tidymodels.org/ recipes package
• https://embed.tidymodels.org/ embed package

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidymodels)
library(embed)
library(GGally)
library(ggrepel)
library(kernlab)
library(dimRed)
library(RANN)
penguins <- modeldata::penguins %>% drop_na()
pca_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

penguins_pca <- pca_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_pca %>%
ggplot(aes(x = PC1, y = PC2, color = species, shape = species)) +
geom_point()

prep_pca_rec <- pca_rec %>% prep()

Access the object from the underlying engine
summary(prep_pca_rec$steps[[2]]$res)
explained_variance <- tidy((pca_rec %>% prep())$steps[[2]],
type = "variance")

perc_variance <- explained_variance %>%
filter(terms == "percent variance")

cum_perc_variance <- explained_variance %>%

258

https://recipes.tidymodels.org/
https://embed.tidymodels.org/

filter(terms == "cumulative percent variance")

ggplot(explained_variance, aes(x = component, y = value)) +
geom_bar(data = perc_variance, stat = "identity") +
geom_line(data = cum_perc_variance) +
geom_point(data = cum_perc_variance, size = 2) +
labs(x = "Principal component", y = "Percent variance")

pca <- pca_rec %>%
prep()

loadings <- tidy(pca$steps[[2]], type = "coef") %>%
pivot_wider(id_cols = "terms", names_from = "component",

values_from = "value")
scale <- 4
penguins_pca %>%
ggplot(aes(x = PC1, y = PC2)) +
geom_point(aes(color = species, shape = species)) +
geom_segment(data = loadings,

aes(xend = scale * PC1, yend = scale * PC2, x = 0, y = 0),
arrow = arrow(length = unit(0.15, "cm"))) +

geom_label_repel(data = loadings,
aes(x = scale * PC1, y = scale * PC2, label = terms),
hjust = "left", size = 2)

pca_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca_truncated(all_numeric_predictors(), num_comp = 2)

penguins_pca <- pca_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_pca %>%
ggplot(aes(x = PC1, y = PC2, color = species, shape = species)) +
geom_point()

kpca_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_kpca(all_numeric_predictors(), num_comp = 2)

penguins_kpca <- kpca_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_kpca %>%
ggplot(aes(x = kPC1, y = kPC2, color = species, shape = species)) +

259

geom_point()
kpca_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_kpca(all_numeric_predictors(), num_comp = 2,

options = list(kernel = "polydot", kpar = list(degree = 2)))

penguins_kpca <- kpca_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_kpca %>%
ggplot(aes(x = kPC1, y = kPC2, color = species, shape = species)) +
geom_point()

umap_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_umap(all_numeric_predictors(), num_comp = 2)

penguins_umap <- umap_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_umap %>%
ggplot(aes(x = UMAP1, y = UMAP2, color = species, shape = species)) +
geom_point()

umap_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_umap(all_numeric_predictors(), num_comp = 2,

min_dist = 0.5)

penguins_umap <- umap_rec %>%
prep() %>%
bake(new_data = NULL)

penguins_umap %>%
ggplot(aes(x = UMAP1, y = UMAP2, color = species, shape = species)) +
geom_point()

isomap_rec <- recipe(data = penguins, formula = ~ .) %>%
step_normalize(all_numeric_predictors()) %>%
step_isomap(all_numeric_predictors(), num_terms = 2, neighbors = 100)

penguins_isomap <- isomap_rec %>%
prep() %>%

260

bake(new_data = NULL)
penguins_isomap %>%
ggplot(aes(x = Isomap1, y = Isomap2, color = species, shape = species)) +
geom_point()

data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)

formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

pls_rec <- recipe(data = data, formula = formula) %>%
step_normalize(all_numeric_predictors()) %>%
step_pls(all_numeric_predictors(), outcome = "mpg", num_comp = 2)

mtcars_pls <- pls_rec %>%
prep() %>%
bake(new_data = NULL)

mtcars_pls %>%
ggplot(aes(x = PLS1, y = PLS2, color = mpg, size = mpg)) +
geom_point()

261

19 Clustering

Tidymodels provides a framework for clustering with the tidyclust package. It currently
supports the following clustering algorithms:

• k-means clustering (k_means())
• hierarchical clustering (hier_clust())

Clustering methods are defined similarly to predictive models in tidymodels (parsnip). This
means each of the methods can use different engines and we can combine we can define clus-
tering with a preprocessing recipe in a workflow.

Load the packages we need for this chapter.

library(tidymodels)
library(tidyclust)
library(kableExtra)
library(patchwork)
library(GGally)
library(DT)

Because tuning requires training many models, we also enable parallel computing.

library(future)
plan(multisession, workers = parallel::detectCores(logical = FALSE))

19.1 k-means clustering

The k_means() function is a wrapper around four different packages. Here is an example using
the default stats::kmeans engine to cluster the penguins dataset into three clusters.

k-means clustering uses a random starting point,
so we set a seed for reproducibility
set.seed(123)
penguins <- modeldata::penguins %>% drop_na()

262

formula <- ~ bill_length_mm + bill_depth_mm + flipper_length_mm +
body_mass_g

rec_penguins <- recipe(formula, data = penguins) %>%
step_normalize(all_predictors())

kmeans_penguins <- k_means(num_clusters = 3) %>%
set_engine("stats") %>%
set_mode("partition")

kmeans_wf <- workflow() %>%
add_recipe(rec_penguins) %>%
add_model(kmeans_penguins)

Note that the preprocessing includes a normalization step. This is recommended so that all
predictors have the same scale. The kmeans_wf object can be used to fit the model.

kmeans_model <- kmeans_wf %>% fit(data = penguins)

The tidy function gives us a concise overview of the results.

tidy(kmeans_model) %>% datatable(rownames = FALSE)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/RtmpAJ4hGD/file150bd510e6240/widget150bd7548153.html screenshot completed

Show 10 entries Search:

Showing 1 to 3 of 3 entries Previous 1 Next

-1.045235923738424 0.485894439397612 -0.8803700501844002 -0.7616077652288106 129 120.7030471030117 1

0.6710153036282146 0.8040533794691072 -0.2889117950289312 -0.3835267045110856 85 109.4813179674477 2

0.653774229864347 -1.101049747371146 1.160716294548293 1.099556063848393 119 139.4683666006648 3

bill_length_mm▲▼ bill_depth_mm▲▼ flipper_length_mm▲▼ body_mass_g▲▼ size▲▼ withinss▲▼ cluster▲▼

The resulting table has a row for each cluster and contains columns for the cluster centers,
the number of observations in each cluster, and the within-cluster sum of squares. The cluster
center coordinates are based on normalized data and therefore not directly comparable to the
original data.

263

LIGHTBULB Useful to know

It is important to set a random seed for reproducibility. The numbering of clusters as
well as cluster assignments of data points in rougly equal distance to multiple cluster
centers can be different each time you run the code

We can also look at the cluster center coordinates using a parallel coordinate plot (see Fig-
ure 19.1).

tidy(kmeans_model) %>%
pivot_longer(cols = c("bill_length_mm", "bill_depth_mm",

"flipper_length_mm", "body_mass_g")) %>%
ggplot(aes(x = name, y = value,

group = cluster, color = cluster, shape = cluster)) +
geom_point(size = 3) +
geom_line() +
labs(x = "", y = "Value at cluster center")

−1.0

−0.5

0.0

0.5

1.0

bill_depth_mm bill_length_mm body_mass_g flipper_length_mm

V
al

ue
 a

t c
lu

st
er

 c
en

te
r

cluster

1

2

3

Figure 19.1: Cluster center values for each variable

Clusters 1 and 2 have similar characteristics and differ only with respect to bill length. Cluster
1 represents penguins with smaller bill lengths compared to the penguins in clusters 2 and 3.
Cluster 3 is clearly different to the other two clusters and represents penguins with a larger
body mass, longer flippers, and smaller bill depth.

We can use the augment() function to add the cluster assignments to the original or new
data.

264

cl_penguins <- augment(kmeans_model, new_data = penguins)
datatable(cl_penguins %>% head(), rownames = FALSE)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/RtmpAJ4hGD/file150bd4b61148f/widget150bd528cdef2.html screenshot completed

Show 10 entries Search:

Showing 1 to 6 of 6 entries Previous 1 Next

Cluster_1 Adelie Torgersen 39.1 18.7 181 3750 male

Cluster_1 Adelie Torgersen 39.5 17.4 186 3800 female

Cluster_1 Adelie Torgersen 40.3 18 195 3250 female

Cluster_1 Adelie Torgersen 36.7 19.3 193 3450 female

Cluster_1 Adelie Torgersen 39.3 20.6 190 3650 male

Cluster_1 Adelie Torgersen 38.9 17.8 181 3625 female

.pred_cluster▲▼ species▲▼ island ▲
▼ bill_length_mm▲▼ bill_depth_mm▲▼ flipper_length_mm▲▼ body_mass_g▲▼ sex ▲

▼

Figure 19.2 shows a scatterplot matrix (ggpairs) of the penguin data with the cluster assign-
ments indicated by color. The clusters are clearly separated in the scatterplot matrix. The
GGally package provides a ggpairs() function that can be used to create such a plot.

cl_penguins %>%
select(-c(species, island, sex)) %>%
ggpairs(aes(color = .pred_cluster))

265

Corr: −0.229***

Cluster_1: 0.143

Cluster_2: 0.087

Cluster_3: 0.654***

Corr: 0.653***

Cluster_1: 0.026

Cluster_2: 0.105

Cluster_3: 0.664***

Corr: −0.578***

Cluster_1: 0.265**

Cluster_2: 0.331**

Cluster_3: 0.711***

Corr: 0.589***

Cluster_1: 0.271**

Cluster_2: −0.188.

Cluster_3: 0.667***

Corr: −0.472***

Cluster_1: 0.557***

Cluster_2: 0.536***

Cluster_3: 0.723***

Corr: 0.873***

Cluster_1: 0.317***

Cluster_2: 0.465***

Cluster_3: 0.711***

.pred_cluster bill_length_mm bill_depth_mm flipper_length_mm body_mass_g

.pred_cluster
bill_length_m

m
bill_depth_m

m
flipper_length_m

m
body_m

ass_g

0 51015 0 51015 0 51015 40 50 60 15.0 17.5 20.0 170180190200210220230 3000 4000 5000 6000

0

50

100

40

50

60

12.5

15.0

17.5

20.0

180

200

220

2500

3500

4500

5500

6500

Figure 19.2: k-means clustering of penguins

It is interesting to compare the distribution of the other variables in the clusters.

plot_distribution <- function(variable) {
g <- ggplot(cl_penguins, aes(fill = .data[[variable]],

x = .pred_cluster)) +
geom_bar() +
theme(legend.position = "inside",
legend.position.inside = c(0.74, 0.83)) +

scale_y_continuous(limits = c(0, 200)) +
labs(y = "", x = "")

return(g)
}
g1 <- plot_distribution("species")
g2 <- plot_distribution("island")
g3 <- plot_distribution("sex")

266

g1 + g2 + g3

0

50

100

150

200

Cluster_1 Cluster_2 Cluster_3

species

Adelie

Chinstrap

Gentoo

0

50

100

150

200

Cluster_1 Cluster_2 Cluster_3

island

Biscoe

Dream

Torgersen

0

50

100

150

200

Cluster_1 Cluster_2 Cluster_3

sex

female

male

Figure 19.3: Distribution of other variables in the clusters

Figure 19.3 shows that the clusters separate the species well. The clusters also show some
discrimination of islands. Cluster 3 contains only penguins from Biscoe and cluster 2 mostly
penguins from Dream. Sex is not well separated by the clusters.

LIGHTBULB Useful to know

𝑘-Means clustering requires numerical data. If your dataset contains factors, tidyclust
will automatically convert these to indicator variables.1

19.2 Hierarchical clustering

The tidyclust package also provides hierarchical clustering. Using the same penguin dataset
and the recipe from the previous section we can fit a hierarchical clustering as follows. In
hierarchical clustering, points are combined based on distances. It is therefore recommended
to normalize the data. At the time of writing, hierarchical clustering did not work as part
of a workflow.2 We therefore first preprocess the data and then perform the hierarchical
clustering.

formula <- ~ bill_length_mm + bill_depth_mm + flipper_length_mm +
body_mass_g

1I couldn’t get this to work in a workflow
2If you get it to work, let me know

267

rec_penguins <- recipe(formula, data = penguins) %>%
step_normalize(all_predictors())

norm_penguins <- rec_penguins %>%
prep() %>%
bake(new_data = penguins)

hier_penguins <- hier_clust(linkage_method = "complete",
num_clusters = 3) %>%
set_engine("stats") %>%
set_mode("partition")

hier_model <- hier_penguins %>% fit(formula, data = norm_penguins)

We specify the number of clusters (num_clusters) in the hier_clust function. An alternative
would be to define the height at which to cut the dendrogram using cut_height.

Currently, tidyclust only provides a wrapper around the stats::hclust function. The
resulting clustering can be visualized by accessing the underlying hier_model$fit object.

hier_model$fit %>% plot()

v1
57

v1
91

v2
13

v2
31

v2
04

v1
77

v2
52 v2

50
v2

56
v1

94
v1

71
v1

82
v1

53
v2

37
v1

65
v1

96 v1
78

v2
64

v2
29

v1
59

v2
23

v2
33

v2
61

v1
68

v2
39

v2
10

v2
00

v2
62 v

24
3

v1
49

v1
74

v2
21

v2
25

v2
27

v1
63

v1
86

v2
08

v2
58

v1
69

v1
61

v1
98

v1
47

v1
52

v1
88

v1
92

v2
06

v1
55

v1
84

v2
02

v1
79

v2
46

v2
09

v2
59

v1
85

v2
53

v1
95

v2
49

v2
41

v1
89

v2
54

v2
15

v2
19

v2
42

v2
35

v2
45

v1
70

v2
47

v2
01

v2
03

v2
18

v1
56

v1
72

v2
07

v1
54

v1
76

v2
16

v2
17 v1

64
v2

22
v2

60
v1

60
v1

73
v1

51
v1

97
v1

67
v2

32 v
18

3
v2

24
v2

30
v2

34
v2

36
v2

20
v2

55 v2
57

v2
11

v1
48

v2
12 v2

48
v2

05
v2

14 v1
99

v1
66

v1
80

v2
26

v2
51

v2
44

v2
40

v1
93

v2
28 v

18
1

v1
58

v2
65

v1
87

v2
38

v1
90

v2
63 v1

62
v1

50
v1

75 v3
13

v3
06

v3
32

v3
26

v3
23

v2
81

v3
19

v3
03

v3
29

v2
97

v2
95

v3
05

v3
04

v2
72

v3
14

v2
66

v2
90

v2
87

v3
12

v2
69

v2
84 v1

26
v3

25 v
33

0
v2

71
v3

02
v2

76
v2

94 v
31

6
v3

01
v3

15
v3

27
v2

78
v3

07 v3
22

v3
09

v3
28

v2
80

v3
18

v2
83

v2
85

v3
11

v2
79

v2
91

v2
99

v3
17

v2
73

v3
10

v3
00

v3
31

v3
33

v2
93

v3
24 v2

92
v3

08
v3

21 v
28

2
v2

77
v2

70
v2

75 v2
67

v2
68

v2
89

v3
5

v8
8

v4
1

v4
6

v1
41

v7
8

v9
8

v8
3

v3
2

v1
02 v1

12
v1

16 v3
1

v1
32 v8

0
v9 v5

v1
09

v1
0

v7 v9
6

v4
4

v1
3

v5
6 v

15
v1

06
v3

7
v5

8
v6

0 v6
6

v5
0

v5
2

v1
18

v1
46 v

74
v4

8
v1

20
v7

6
v1

28
v1

34
v9

2
v1

22 v
12

4
v8

6
v9

0
v6

8
v2

74 v9
4

v7
0

v1
10 v

10
4

v3
9

v6
4

v1
08

v9
9

v1
14

v2
3

v2
8 v7

2
v1

8
v8

1
v2

1
v7

7 v3
4

v1
00

v1
40 v

1
v1

7
v5

4 v4 v1
2

v1
44

v8
4

v9
1

v8
2

v1
27

v6
5

v6
9

v9
5

v1
43

v4
3

v4
7 v1
6

v2
4 v6 v2
0

v1
9

v2
7

v3
3

v2
2

v4
2 v6

2
v2

5
v2

9 v
93

v1
37

v7
3

v1
33 v5

7
v1

45
v1

11
v1

23 v6
3

v1
39 v9

7
v1

19
v1

03
v5

3
v4

0
v5

9
v1

1
v1

42
v1

29
v4

5
v5

1
v7

9
v1

21
v1

25 v
49

v1
4

v3
6

v3
8

v7
5

v1
31

v1
13

v8
9

v1
15 v

55 v8
7

v2
88

v2
96

v2
98

v3
20 v2

6
v1

17
v8

v2
86

v3
v1

07 v6
7

v1
35 v

2
v1

30
v1

36
v7

1
v1

38
v8

5
v1

01
v1

05 v3
0

v6
1

0
2

4
6

Cluster Dendrogram

stats::hclust (*, "complete")
stats::as.dist(dmat)

H
ei

gh
t

Figure 19.4: Cluster dendrogram for a hierarchical clustering of the penguins dataset using
complete linkage

Figure 19.4 shows the dendrogram of the complete linkage clustering.

268

As we specified number of clusters, we can extract information about the resulting cluster.

cluster_assignment <- hier_model %>% extract_cluster_assignment()
centroids <- hier_model %>% extract_centroids()

centroids %>%
pivot_longer(cols = c("bill_length_mm", "bill_depth_mm",

"flipper_length_mm", "body_mass_g")) %>%
ggplot(aes(x = name, y = value,

group = .cluster, color = .cluster, shape = .cluster)) +
geom_point(size = 3) +
geom_line() +
labs(x = "", y = "Value at cluster center")

−1.0

−0.5

0.0

0.5

1.0

bill_depth_mm bill_length_mm body_mass_g flipper_length_mm

V
al

ue
 a

t c
lu

st
er

 c
en

te
r

.cluster

Cluster_1

Cluster_2

Cluster_3

Figure 19.5: Cluster center values for each variable from hierarchical clustering

Figure 19.5 visualizes the co-ordinates of the cluster centroids. The results are comparable to
the k-means clustering shown in Figure 19.1.

The resulting hiearchical clustering can also predict new data. It classifies a data point by
distance to the nearest cluster centroid. In contrast to k-means clustering, you can specify the
number of clusters or the cut height in the predict function.

pred_class <- hier_model %>%
predict(new_data = norm_penguins, num_clusters = 4)

We can visualize the resulting cluster assignments in a pairs plot.

269

bind_cols(
penguins,
hier_model %>%

predict(new_data = norm_penguins, num_clusters = 4),
) %>%
select(-c(species, island, sex)) %>%
ggpairs(aes(color = .pred_cluster))

Corr: −0.229***

Cluster_1: 0.136

Cluster_2: 0.091

Cluster_3: −0.234*

Cluster_4: 0.245

Corr: 0.653***

Cluster_1: 0.153.

Cluster_2: 0.315*

Cluster_3: 0.611***

Cluster_4: 0.282.

Corr: −0.578***

Cluster_1: 0.338***

Cluster_2: 0.337**

Cluster_3: −0.302**

Cluster_4: −0.083

Corr: 0.589***

Cluster_1: 0.285***

Cluster_2: −0.007

Cluster_3: 0.627***

Cluster_4: −0.053

Corr: −0.472***

Cluster_1: 0.566***

Cluster_2: 0.586***

Cluster_3: −0.053

Cluster_4: −0.400*

Corr: 0.873***

Cluster_1: 0.374***

Cluster_2: 0.433***

Cluster_3: 0.674***

Cluster_4: 0.268

bill_length_mm bill_depth_mm flipper_length_mm body_mass_g .pred_cluster

bill_length_m
m

bill_depth_m
m

flipper_length_m
m

body_m
ass_g

.pred_cluster

40 50 6012.5 15.0 17.5 20.0 180 200 220 2500 3500 4500 5500 6500Cluster_1Cluster_2Cluster_3Cluster_4

0.0

0.1

0.2

0.3

15.0

17.5

20.0

170

180

190

200

210

220

230

3000

4000

5000

6000

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

Figure 19.6: Hierarchical clustering of penguins

As can be seen in Figure 19.6 the additional split leads to the formation of the blue and purple
clusters (compare to k-means Figure 19.2 for three clusters).

270

19.3 Determine the number of clusters

set.seed(123)
penguins <- modeldata::penguins %>%
drop_na()

formula <- ~ bill_length_mm + bill_depth_mm + flipper_length_mm +
body_mass_g

rec_penguins <- recipe(formula, data = penguins) %>%
step_normalize(all_predictors())

kmeans_penguins <- k_means(num_clusters = tune()) %>%
set_engine("stats") %>%
set_mode("partition")

kmeans_wf <- workflow() %>%
add_recipe(rec_penguins) %>%
add_model(kmeans_penguins)

In order to tune the number of clusters, we set num_clusters=tune(). We can now run the
tune_cluster function using a grid search over different values with cross-validation.

set.seed(4400)
folds <- vfold_cv(penguins, v = 2)
grid <- tibble(num_clusters = 1:10)
result <- tune_cluster(kmeans_wf, resamples = folds, grid = grid,
metrics = cluster_metric_set(sse_within_total, silhouette_avg))

We can use the collect_metrics function to retrieve the cluster metrics for different cluster
numbers. By default, tidyclust computes the total sum of squares (sse_total) and the
within-cluster SSE (sse_within_total).

collect_metrics(result) %>% head()

A tibble: 6 x 7
num_clusters .metric .estimator mean n std_err .config

<int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 1 silhouette_avg standard NaN 0 NA Preprocessor1_~
2 1 sse_within_total standard 662 2 2.00 Preprocessor1_~
3 2 silhouette_avg standard 0.529 2 0.0105 Preprocessor1_~
4 2 sse_within_total standard 278. 2 18.4 Preprocessor1_~
5 3 silhouette_avg standard 0.461 2 0.0188 Preprocessor1_~
6 3 sse_within_total standard 182. 2 1.65 Preprocessor1_~

271

tune_cluster also supports the autoplot function to visualize the variation of cluster metrics
as a function of the tuning parameter.

autoplot(result)

sse_within_total

silhouette_avg

2.5 5.0 7.5 10.0

0.25

0.30

0.35

0.40

0.45

0.50

100

200

300

400

500

600

Clusters

Figure 19.7: Cluster metrics as a function of number of clusters

The metrics curves are interpreted as follows to determine the optimal number of clusters.
For the sse_within_total curve, we look for an ellbow, a point where the slope of the curve
changes visibly. In our case, the ellbow is either at 2 or at 3. In the silhouette_avg curve,
the optimal cluster number corresponds to the maximum of the curve, here 2.

272

LIGHTBULB Useful to know

To identify the ellbow, sometimes also called the knee, is highly subjective. Consider the
graph in Figure 19.7 again.

100

200

300

400

500

600

2.5 5.0 7.5 10.0
Clusters

ss
e_

w
ith

in
_t

ot
al

Figure 19.8: Using the ellbow method to select the number of clusters

In Figure 19.8, we added two lines manually. The red, dashed line highlights the initial
decline in sse_within_total and the blue, dotted line the later, less rapid change. The
two lines cross around 2.5 (the ellbow) which tells us that we should use 2 or 3 clusters.

While approaches like the ellbow method or metrics like the silhouette_avg can act as a
guideline, the decision of how many clusters to keep is somewhat subjective and often depends
more on the use case.

Once we have made a decision on the number of clusters, we can train a finalized model using
the finalize_model_tidyclust or finalize_workflow_tidyclust methods.

best_params <- data.frame(num_clusters = 3)
model <- finalize_workflow_tidyclust(kmeans_wf, best_params)
model

== Workflow ==
Preprocessor: Recipe
Model: k_means()

273

-- Preprocessor --
1 Recipe Step

* step_normalize()

-- Model ---
K Means Cluster Specification (partition)

Main Arguments:
num_clusters = 3

Computational engine: stats

INFO Further information

• https://tidyclust.tidymodels.org/ tidyclust package

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidymodels)
library(tidyclust)
library(kableExtra)
library(patchwork)
library(GGally)
library(DT)
library(future)
plan(multisession, workers = parallel::detectCores(logical = FALSE))
k-means clustering uses a random starting point,
so we set a seed for reproducibility
set.seed(123)
penguins <- modeldata::penguins %>% drop_na()

formula <- ~ bill_length_mm + bill_depth_mm + flipper_length_mm +
body_mass_g

rec_penguins <- recipe(formula, data = penguins) %>%

274

https://tidyclust.tidymodels.org/

step_normalize(all_predictors())
kmeans_penguins <- k_means(num_clusters = 3) %>%
set_engine("stats") %>%
set_mode("partition")

kmeans_wf <- workflow() %>%
add_recipe(rec_penguins) %>%
add_model(kmeans_penguins)

kmeans_model <- kmeans_wf %>% fit(data = penguins)
tidy(kmeans_model) %>% datatable(rownames = FALSE)
tidy(kmeans_model) %>%
pivot_longer(cols = c("bill_length_mm", "bill_depth_mm",

"flipper_length_mm", "body_mass_g")) %>%
ggplot(aes(x = name, y = value,

group = cluster, color = cluster, shape = cluster)) +
geom_point(size = 3) +
geom_line() +
labs(x = "", y = "Value at cluster center")

cl_penguins <- augment(kmeans_model, new_data = penguins)
datatable(cl_penguins %>% head(), rownames = FALSE)
cl_penguins %>%
select(-c(species, island, sex)) %>%
ggpairs(aes(color = .pred_cluster))

plot_distribution <- function(variable) {
g <- ggplot(cl_penguins, aes(fill = .data[[variable]],

x = .pred_cluster)) +
geom_bar() +
theme(legend.position = "inside",
legend.position.inside = c(0.74, 0.83)) +

scale_y_continuous(limits = c(0, 200)) +
labs(y = "", x = "")

return(g)
}
g1 <- plot_distribution("species")
g2 <- plot_distribution("island")
g3 <- plot_distribution("sex")

g1 + g2 + g3
formula <- ~ bill_length_mm + bill_depth_mm + flipper_length_mm +
body_mass_g

rec_penguins <- recipe(formula, data = penguins) %>%
step_normalize(all_predictors())

275

norm_penguins <- rec_penguins %>%
prep() %>%
bake(new_data = penguins)

hier_penguins <- hier_clust(linkage_method = "complete",
num_clusters = 3) %>%
set_engine("stats") %>%
set_mode("partition")

hier_model <- hier_penguins %>% fit(formula, data = norm_penguins)
hier_model$fit %>% plot()
cluster_assignment <- hier_model %>% extract_cluster_assignment()
centroids <- hier_model %>% extract_centroids()
centroids %>%
pivot_longer(cols = c("bill_length_mm", "bill_depth_mm",

"flipper_length_mm", "body_mass_g")) %>%
ggplot(aes(x = name, y = value,

group = .cluster, color = .cluster, shape = .cluster)) +
geom_point(size = 3) +
geom_line() +
labs(x = "", y = "Value at cluster center")

pred_class <- hier_model %>%
predict(new_data = norm_penguins, num_clusters = 4)

bind_cols(
penguins,
hier_model %>%

predict(new_data = norm_penguins, num_clusters = 4),
) %>%
select(-c(species, island, sex)) %>%
ggpairs(aes(color = .pred_cluster))

set.seed(123)
penguins <- modeldata::penguins %>%
drop_na()

formula <- ~ bill_length_mm + bill_depth_mm + flipper_length_mm +
body_mass_g

rec_penguins <- recipe(formula, data = penguins) %>%
step_normalize(all_predictors())

kmeans_penguins <- k_means(num_clusters = tune()) %>%
set_engine("stats") %>%
set_mode("partition")

kmeans_wf <- workflow() %>%

276

add_recipe(rec_penguins) %>%
add_model(kmeans_penguins)

set.seed(4400)
folds <- vfold_cv(penguins, v = 2)
grid <- tibble(num_clusters = 1:10)
result <- tune_cluster(kmeans_wf, resamples = folds, grid = grid,
metrics = cluster_metric_set(sse_within_total, silhouette_avg))

collect_metrics(result) %>% head()
autoplot(result)
autoplot(result, metric = "sse_within_total") +
geom_abline(intercept = 1000, slope = -350, linetype = "dashed",

color = "red") +
geom_abline(intercept = 190, slope = -12, linetype = "dotted",

color = "blue")
best_params <- data.frame(num_clusters = 3)
model <- finalize_workflow_tidyclust(kmeans_wf, best_params)
model

277

Part VII

Model deep dives

278

20 Linear regression models

The DS-6030 course primarily focuses on predictive modeling. However, it is useful to know
how to access the model parameters and interpret them for linear regression models. In this
section, we will use the tidymodels framework to build a linear regression model and then look
at the model parameters and diagnostics.

Load required libraries

library(tidyverse)
library(tidymodels)
library(kableExtra)
library(ggfortify) # required for diagnostics plots
library(DT)

20.1 Build a linear regression model

We will use the example from Chapter 8 here.

data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)
formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

model <- linear_reg(engine = "lm", mode = "regression") %>%
fit(formula, data = data)

20.2 Analyze model parameters

The tidyverse framework introduced the function tidy which is a generic function similar to
plot or predict. This means, there are implementations for objects of different types. The

279

Table 20.1: Linear regression model parameters extracted using the tidy function

Show 10 entries Search:

Showing 1 to 10 of 11 entries Previous 1 2 Next

(Intercept) 12.303 18.718 0.657 0.518

cyl -0.111 1.045 -0.107 0.916

disp 0.013 0.018 0.747 0.463

hp -0.021 0.022 -0.987 0.335

drat 0.787 1.635 0.481 0.635

wt -3.715 1.894 -1.961 0.063

qsec 0.821 0.731 1.123 0.274

vsstraight 0.318 2.105 0.151 0.881

ammanual 2.520 2.057 1.225 0.234

gear 0.655 1.493 0.439 0.665

term ▲
▼ estimate▲▼ std.error▲▼ statistic▲▼ p.value▲▼

parsnip package also provides an implementations of the tidy function that, works for fitted
models. Using it with our linear regression model, extracts the model parameters. Table 20.1
shows the model parameters extracted with the tidy function.

model %>%
tidy() %>%
datatable(rownames = FALSE) %>%
formatRound(

columns = c("estimate", "std.error", "statistic", "p.value"),
digits = 3

)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/RtmpgH01WX/file170375743b2ad/widget170371d87a89d.html screenshot completed

280

Table 20.2: Linear regression model statistics extracted using the glance function

Show 10 entries Search:

Showing 1 to 1 of 1 entries Previous 1 Next

0.869 0.807 2.650 13.932 0.000 10.000 -69.855 163.710 181.299 147.494 21.000 32.000

r.squared▲▼ adj.r.squared▲▼ sigma▲▼ statistic▲▼ p.value▲▼ df▲▼ logLik▲▼ AIC▲▼ BIC▲▼ deviance▲▼ df.residual▲▼ nobs▲▼

Table 20.3: Plots created by ‘which‘ argument

which Plot
1 Residuals vs Fitted
2 Normal Q-Q
3 Scale-Location
4 Cook’s distance
5 Residuals vs Leverage
6 Cooks’s distance vs Leverage

20.3 Extract model statistics

The broom package provides the function glance to extract model statistics from a fitted
linear regression model. Table 20.2 shows the model statistics for our case.

model %>%
glance() %>%
datatable(rownames = FALSE) %>%
formatRound(columns = names(model %>% glance()), digits = 3)

file:////private/var/folders/_8/ms0ft4913k3290v7f0g_yfpc0000gn/T/RtmpgH01WX/file1703718c33d2/widget170371b9e20c9.html screenshot completed

20.4 Diagnostics plots

The ggfortify package provides implementations of the generic autoplot function that cre-
ates up to six diagnostics plots using ggplot. The plots are selected using the which argument.
The default creates four plots (1, 2, 3, and 5).

20.4.1 Residuals vs Fitted

The argument which=1 creates a graph of residuals vs fitted (see Figure 20.1). This type of
plot is useful for all types of regression, not only linear regressions models.

281

autoplot(model, which = c(1, 2))

18 2017

−2

0

2

4

10 15 20 25 30
Fitted values

R
es

id
ua

ls

Residuals vs Fitted

182017

−2

−1

0

1

2

−2 −1 0 1 2
Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

Figure 20.1: Diagnostics plots: residuals vs fitted (which=1) and Normal Q-Q plot (which=2)

The blue line is a smoother of the residuals. The line should be a flat line and show no trend
in the data. Looking at the plot, we can see that there is some non-linearity in the residuals.
This could be an indication to explore variable transformations or polynomial terms.

The plot can also reveal heteroscedasticity of the residuals. It is however more qualitative; the
scale-location plot can show this better.

20.4.2 Normal Q-Q plot

The normal Q-Q plot looks at the distribution of the residuals. The normal Q-Q plot in
Figure 20.1 shows that in our case, residuals are normally distributed.

20.4.3 Scale-location plot

autoplot(model, which = c(3, 4))

282

18 2017

0.0

0.5

1.0

10 15 20 25 30
Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location

29

9

17

0.0

0.2

0.4

0.6

0 10 20 30
Obs. Number

C
oo

k'
s

di
st

an
ce

Cook's distance

Figure 20.2: Diagnostics plots: scale location plot (which=3) and Cook’s distance plot
(which=4)

The scale location plot can reveal changes in variance of the residuals easier. Figure 20.2,
shows that in our case, the variation doesn’t change much.

20.4.4 Cook’s distance plot

The Cook’s distance measures the influence of a data point on the regression. Figure 20.2,
shows that two data points stand out (9 and 29).

Some suggest that points with a Cook’s distance greater than 1 should be looked at. None of
our data points are flagged in this case. Others suggest 4/(𝑛 − 𝑝 − 1) as a threshold. For our
model, 𝑛 = 32 and 𝑝 = 10, so 4/(𝑛 − 𝑝 − 1) = 4/(32 − 10 − 1) = 0.19. This will flag 9 and 29
as points of interest.

20.4.5 Residuals vs Leverage

autoplot(model, which = c(5, 6))

283

29

9

17

−2

−1

0

1

2

0.0 0.2 0.4 0.6
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residuals vs Leverage

29

9

17

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6
Leverage

C
oo

k'
s

di
st

an
ce

Cook's dist vs Leverage

Figure 20.3: Diagnostics plots: residuals vs leverage (which=5) and Cook’s distance vs leverage
(which=6)

Leverage is another measure of how influential a data point is. The larger the leverage, the
more the data point affects the regression. In our case (see Figure 20.3), no point stands out.

20.4.6 Cooks’s distance vs Leverage

The final plot shows Cook’s distance vs leverage (see Figure 20.3). Again, look for points with
large Cook’s distance or large leverage.

INFO Further information

Additional information can be found in the following resources:

• https://bookdown.org/dereksonderegger/571/7-Diagnostics-Chapter.html
• Comprehensive slide deck by John Fox, the author of the book “Regression Diagnos-

tics” https://socialsciences.mcmaster.ca/jfox/Courses/Brazil-2009/slides-handout.
pdf

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidyverse)

284

https://bookdown.org/dereksonderegger/571/7-Diagnostics-Chapter.html
https://socialsciences.mcmaster.ca/jfox/Courses/Brazil-2009/slides-handout.pdf
https://socialsciences.mcmaster.ca/jfox/Courses/Brazil-2009/slides-handout.pdf

library(tidymodels)
library(kableExtra)
library(ggfortify) # required for diagnostics plots
library(DT)
data <- datasets::mtcars %>%
as_tibble(rownames = "car") %>%
mutate(

vs = factor(vs, labels = c("V-shaped", "straight")),
am = factor(am, labels = c("automatic", "manual")),

)
formula <- mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am +
gear + carb

model <- linear_reg(engine = "lm", mode = "regression") %>%
fit(formula, data = data)

model %>%
tidy() %>%
datatable(rownames = FALSE) %>%
formatRound(

columns = c("estimate", "std.error", "statistic", "p.value"),
digits = 3

)
model %>%
glance() %>%
datatable(rownames = FALSE) %>%
formatRound(columns = names(model %>% glance()), digits = 3)

tibble(
which = c(1, 2, 3, 4, 5, 6),
Plot = c("Residuals vs Fitted", "Normal Q-Q",

"Scale-Location", "Cook's distance",
"Residuals vs Leverage", "Cooks's distance vs Leverage")

) %>%
kableExtra::kbl(caption = "Plots created by `which` argument") %>%
kableExtra::kable_styling(full_width = FALSE)

autoplot(model, which = c(1, 2))
autoplot(model, which = c(3, 4))
autoplot(model, which = c(5, 6))

285

21 Regularized Generalized linear models
(glmnet)

In linear regression, the outcome is a linear function of the predictor variables.

𝑦 = 𝑦0 + 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 +…

where 𝑐𝑖 are the coefficients and 𝑦0 is the intercept.

Generalized linear models (GLMs) extend this idea by adding a link function to the outcome
variable.

𝑔(𝑦) = 𝑦0 + 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 +…

Here, 𝑔 is the link function. The normal linear regression model uses the identity function
𝑔(𝑥) = 𝑥. For logistic regression, the link function is 𝑔(𝑥) = ln 𝑥

1−𝑥 .

21.1 GLM implementation glmnet

The standard R distriution includes the glm function for fitting GLMs. The glmnet package
extends this to include L1 and L2 regularization. To be more specific, it solves the following
problem:

min
𝛽0,𝛽

1
𝑁

𝑁
∑
𝑖=1

𝑤𝑖𝑙(𝑦𝑖, 𝛽0 + 𝛽𝑇𝑥𝑖) + 𝜆 [1 − 𝛼
2

‖𝛽‖2
2 + 𝛼‖𝛽‖1] ,

Here 𝑙 is the negative log-likelihood contribution for observations. The weights 𝑤𝑖 are used to
account for sampling weights. The regularization parameters 𝜆 and 𝛼 are controlling regular-
ization. The 𝜆 value controls the strength of the penalty. The type of regularization is defined
by the 𝛼 value. For 𝛼 = 0, the penalty is L2 regularization (Euclidean norm ‖𝛽‖2

2). For 𝛼 = 1,
the penalty is L1 regularization (absolute value norm ‖𝛽‖1). Setting 𝛼 to a value between 0
and 1 results in a combination of L1 and L2 regularization. Hastie et al. write about the role
of 𝛼:

It is known that the ridge penalty shrinks the coefficients of correlated predictors
towards each other while the lasso tends to pick one of them and discard the others.
The elastic net penalty mixes these two: if predictors are correlated in groups, an
𝛼 = 0.5 tends to either select or leave out the entire group of features. This is a
higher level parameter, and users might pick a value upfront or experiment with a

286

https://glmnet.stanford.edu/articles/glmnet.html

few different values. One use of 𝛼 is for numerical stability; for example, the elastic
net with 𝛼 = 1− 𝜖 for some small 𝜖 > 0 performs much like the lasso, but removes
any degeneracies and wild behavior caused by extreme correlations.

21.2 glmnet in tidymodels

The glmnet package is accessible in the tidymodels framework. It can be selected as an engine
for linear regression (see Section A.2.3) and logistic regression (see Section A.4.2).

The 𝜆 parameter in the elasticnet equation corresponds to the penalty argument. 𝛼 is con-
trolled by the mixture argument.

You can find example code for using glmnet in the tidymodels in Chapter @ef(model-tuning)
and Section @(tune-one-standard-error). Here, we will cover functionality that is specific to
glmnet.

Load the packages we need for this chapter.

library(tidymodels)
library(tidyverse)
library(ggfortify)
library(patchwork)

Let’s start with training a Lasso model on the mtcars dataset.

set.seed(123)
rec <- recipe(mpg ~ ., data = mtcars)
spec <- linear_reg(mode = "regression", penalty = 1.0, mixture = 1) %>%
set_engine("glmnet")

wf <- workflow() %>%
add_recipe(rec) %>%
add_model(spec)

wf_fit <- wf %>% fit(mtcars)

21.2.1 Coefficients - one of many

We can get the coefficients from the model using the tidy function.

tidy(wf_fit)

287

Attaching package: 'Matrix'

The following objects are masked from 'package:tidyr':

expand, pack, unpack

Loaded glmnet 4.1-8

A tibble: 11 x 3
term estimate penalty
<chr> <dbl> <dbl>

1 (Intercept) 35.3 1
2 cyl -0.872 1
3 disp 0 1
4 hp -0.0101 1
5 drat 0 1
6 wt -2.59 1
7 qsec 0 1
8 vs 0 1
9 am 0 1
10 gear 0 1
11 carb 0 1

These are the coefficients of the model corresponding to the penalty of 1. We can see that
most coefficients are 0. This is the effect of the L1 regularization.

Under the hood, glmnet is using a grid of 𝜆 values and fits the model for all of these values. We
can get the coefficients for all examined 𝜆 values using the extract_fit_engine function.

tidy(wf_fit %>% extract_fit_engine())

A tibble: 640 x 5
term step estimate lambda dev.ratio
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 1 20.1 5.15 0
2 (Intercept) 2 21.6 4.69 0.129
3 (Intercept) 3 23.2 4.27 0.248
4 (Intercept) 4 24.7 3.89 0.347
5 (Intercept) 5 26.0 3.55 0.429
6 (Intercept) 6 27.2 3.23 0.497

288

7 (Intercept) 7 28.4 2.95 0.554
8 (Intercept) 8 29.4 2.68 0.601
9 (Intercept) 9 30.3 2.45 0.640
10 (Intercept) 10 31.1 2.23 0.673
i 630 more rows

Here are the results for a lambda value close to 1.

wf_fit %>%
extract_fit_engine() %>%
tidy() %>%
filter(lambda < 1.1) %>%
filter(lambda >= 1.0)

A tibble: 4 x 5
term step estimate lambda dev.ratio
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 18 35.1 1.06 0.805
2 cyl 18 -0.868 1.06 0.805
3 hp 18 -0.00965 1.06 0.805
4 wt 18 -2.56 1.06 0.805

The coefficients are the close to the ones we got from the tidy function. glmnet interpolates
the coefficients for the 𝜆 values that are not in the grid.

21.2.2 Plotting the coefficients

Because the coefficients are all estimated for a grid of 𝜆 values, we can plot the coefficients
as a function of 𝜆. The glmnet package provides a function for this. Figure 21.1 shows the
resulting plot.

opar <- par(mfrow = c(1, 2))
plot(wf_fit %>% extract_fit_engine(), label = TRUE)
plot(wf_fit %>% extract_fit_engine(), label = TRUE, xvar = "lambda")
par(opar)

289

0 2 4 6 8

−
3

−
1

0
1

2

L1 Norm

C
oe

ffi
ci

en
ts

0 2 5 8 10

123

4

5

6

7

8

9

10

−4 −2 0

−
3

−
1

0
1

2

Log Lambda

C
oe

ffi
ci

en
ts

10 9 3

123

4

5

6

7

8

9

10

Figure 21.1: Coefficients for the glmnet model as a function of the penalty parameter 𝜆.

Each line corresponds to the coefficient value for a given L1 norm of the coefficients. On the
left side, all coefficients are 0 due to a very high penalty. As the penalty decreases, the L1
norm increases and we see coefficients different from zero. The numbers on the top of the plot
are the number of non-zero coefficients.

LIGHTBULB Useful to know

Note that the logarithm of lambda used in the right plots is the natural logarithm. This
means that for example log lambda of -2 corresponds to lambda of 0.135.

The ggfortify package provides a autoplot function for glmnet models that produces a
clearer version of the coefficient values as a function of 𝜆. Because the result is a ggplot2
graph, you can make additional changes.

g1 <- autoplot(wf_fit %>% extract_fit_engine(), xvar = "norm")
g2 <- autoplot(wf_fit %>% extract_fit_engine(), xvar = "lambda")
g1 + g2

290

0 2 3 6 8 9 10

−2

0

2

0.0 2.5 5.0 7.5
L1 Norm

C
oe

ffi
ci

en
ts

variable

am

carb

cyl

disp

drat

gear

hp

qsec

vs

wt

3 3 3 3 2 2 0

−2

0

2

−4 −2 0 2
Log Lambda

C
oe

ffi
ci

en
ts

variable

am

carb

cyl

disp

drat

gear

hp

qsec

vs

wt

Figure 21.2: Coefficients for the glmnet model using the autoplot function from ggfortify as
a function of L1 norm (left) or lambda (right)

Figure 21.2 shows the resulting plot. The left plot shows the coefficients as a function of the
L1 norm. The right plot shows the coefficients as a function of the log of the 𝜆 value.

INFO Further information

• glmnet introduction
• Full details about the glmnet integration in parsnip

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidymodels)
library(tidyverse)
library(ggfortify)
library(patchwork)
set.seed(123)
rec <- recipe(mpg ~ ., data = mtcars)
spec <- linear_reg(mode = "regression", penalty = 1.0, mixture = 1) %>%
set_engine("glmnet")

wf <- workflow() %>%
add_recipe(rec) %>%
add_model(spec)

wf_fit <- wf %>% fit(mtcars)
tidy(wf_fit)

291

https://glmnet.stanford.edu/articles/glmnet.html
https://parsnip.tidymodels.org/reference/glmnet-details.html

tidy(wf_fit %>% extract_fit_engine())
wf_fit %>%
extract_fit_engine() %>%
tidy() %>%
filter(lambda < 1.1) %>%
filter(lambda >= 1.0)

opar <- par(mfrow = c(1, 2))
plot(wf_fit %>% extract_fit_engine(), label = TRUE)
plot(wf_fit %>% extract_fit_engine(), label = TRUE, xvar = "lambda")
par(opar)
g1 <- autoplot(wf_fit %>% extract_fit_engine(), xvar = "norm")
g2 <- autoplot(wf_fit %>% extract_fit_engine(), xvar = "lambda")
g1 + g2

292

22 Generalized additive models (GAM)

In linear regression, the outcome is a linear function of the predictor variables.

𝑦 = 𝑦0 + 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 +…

where 𝑐𝑖 are the coefficients and 𝑦0 is the intercept.

Generalized linear models (GLMs) extend this idea by adding a link function to the outcome
variable.

𝑔(𝑦) = 𝑦0 + 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 +…

Here, 𝑔 is the link function. The normal linear regression model uses the identity function
𝑔(𝑥) = 𝑥. For logistic regression, the link function is 𝑔(𝑥) = ln 𝑥

1−𝑥 .

A generalized additive model (GAM) extends the concept even further and describes the
outcome as a linear function of transformed predictor variables.

𝑔(𝑦) = 𝑦0 + 𝑐1𝑓1(𝑥1) + 𝑐2𝑓2(𝑥2) + 𝑐3𝑓3(𝑥3) + …

The functions 𝑓𝑖 are usually smooth functions, such as splines, that are estimated from the
data. The coefficients 𝑐𝑖 are estimated using maximum likelihood estimation.

GAMs are useful when the relationship between the outcome and the predictor variables is not
linear. For example, the relationship may be quadratic or sinusoidal. GAMs are also useful
when the relationship is not known in advance and will be estimated from the data.

22.1 Specifying GAMs in formula notation

The GAM models extend the formula notation with special smoothing terms. Here is an
example:

mpg ~ s(displacement) + s(horsepower) + s(weight) +
acceleration + year

293

The s() function indicates that the variable is smoothed. The smoothing is done using splines.
See the documentation for full details.

22.2 GAMs in Tidymodels

In tidymodels, GAMs are available with the gen_additive_mod function from the parsnip
package. The only available engine that can be used is the mgcv package. The next section
will demonstrate how to train GAM models in tidymodels. However, workflows requires a
different approach from what we’ve seen so far.

library(tidymodels)
library(tidyverse)
library(patchwork)

22.3 Example: GAM for the mpg dataset

In the following, we use the ISLR2::Auto dataset to predict the fuel efficiency of cars. Load
and preprocess the data:

auto <- ISLR2::Auto %>%
as_tibble() %>%
mutate(

cylinders = as.factor(cylinders),
origin = as.factor(origin),

) %>%
select(-name)

The dataset contains 392 observations with 8 variables. The outcome variable is mpg and the
predictor variables are displacement, horsepower, weight, acceleration, and year.

22.3.1 Utility functions

For convenience, we define a series of utility functions. Open the code block to see the imple-
mentations.

294

https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/formula.gam.html

create a residual plot
residual_plot <- function(model_fit, data, outcome) {
result <- tibble(prediction = predict(model_fit, new_data = data)$.pred)
result["residual"] <- data[outcome] - result["prediction"]
g <- ggplot(result, aes(x = prediction, y = residual)) +

geom_point() +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(method = "loess", formula = "y ~ x") +
labs(x = "Predicted mpg", y = "Residuals")

return(g)
}

collect and show model metrics
append_model_metrics <- function(model_metrics, model_fit, model_name) {
model_metrics <- bind_rows(

model_metrics,
bind_cols(
model = model_name,
metrics(augment(model_fit, new_data = auto),
truth = mpg, estimate = .pred)

)
)
return(model_metrics)

}

show_metrics_table <- function(model_metrics) {
return(

model_metrics %>%
pivot_wider(names_from = .metric, values_from = .estimate) %>%
select(-.estimator) %>%
knitr::kable(digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

)
}

22.3.2 Linear regression model

formula <- mpg ~ displacement + horsepower + weight +
acceleration + year

lm_model <- linear_reg() %>%

295

set_engine("lm") %>%
fit(formula, data = auto)

model_metrics <- append_model_metrics(tibble(), lm_model, "Linear model")
show_metrics_table(model_metrics)

model rmse rsq mae

Linear model 3.409 0.809 2.619

The residual plot is shown in Figure 22.1.

residual_plot(lm_model, auto, "mpg")

−5

0

5

10

15

10 20 30
Predicted mpg

R
es

id
ua

ls

Figure 22.1: Residuals of the linear regression model

We observe two issues with the residuals vs. fit plot.

• The residuals are fanning out, i.e. they have a small spread for small values of the
predicted mpg and a larger spread for larger values of the predicted mpg.

• The graph shows a non-linear relationship

Both observations indicate that the model is not a good fit for the data. An obvious approach
would be to add quadratic terms to the model. GAMs are an alternative way of addressing
this issue.

296

22.3.3 GAM with splines

We start by adding smoothers to the variable displacement, horsepower, weight, and
acceleration.

gam_formula <- mpg ~ s(displacement) + s(horsepower) + s(weight) +
s(acceleration) + year

gam_model <- gen_additive_mod() %>%
set_engine("mgcv") %>%
set_mode("regression") %>%
fit(gam_formula, data = auto)

model_metrics <- append_model_metrics(model_metrics, gam_model, "GAM")
show_metrics_table(model_metrics)

model rmse rsq mae

Linear model 3.409 0.809 2.619
GAM 2.835 0.868 2.084

The metrics show that the GAM model is a much better fit than the linear regression model.
This is also obvious in the residual plot in Figure 22.2. The residuals are smaller and the
non-linearity is less pronounced.

g1 <- residual_plot(lm_model, auto, "mpg") +
labs(title = "Linear regression") +
ylim(-10, 15)

g2 <- residual_plot(gam_model, auto, "mpg") +
labs(title = "GAM") +
ylim(-10, 15)

g1 + g2

297

−10

−5

0

5

10

15

10 20 30
Predicted mpg

R
es

id
ua

ls
Linear regression

−10

−5

0

5

10

15

10 20 30
Predicted mpg

R
es

id
ua

ls

GAM

Figure 22.2: Residuals of the linear regression (left) and GAM (right) models

There is still some heteroskedasticity in the residuals.

22.3.4 GAM in workflows

The GAM model can also be used in a workflow. However, we can only use formulas in recipes
that specify variables and not transformations. Instead, we need to use the add_variables
method and specify the formula in the add_model function.

spec <- gen_additive_mod() %>%
set_engine("mgcv") %>%
set_mode("regression")

wf <- workflow() %>%
add_variables(outcomes = c(mpg),

predictors = c(displacement, horsepower, weight,
acceleration, year)) %>%

add_model(spec, formula = gam_formula)
wf_model <- wf %>% fit(data = auto)
model_metrics <- append_model_metrics(model_metrics, wf_model,
"GAM-wf")

show_metrics_table(model_metrics)

298

model rmse rsq mae

Linear model 3.409 0.809 2.619
GAM 2.835 0.868 2.084
GAM-wf 2.835 0.868 2.084

The metrics are, as expected, identical to the results from the previous GAM model and
Figure 22.3 shows the same residual plot as before.

residual_plot(wf_model, auto, "mpg") +
labs(title = "GAM")

−10

−5

0

5

10

10 20 30
Predicted mpg

R
es

id
ua

ls

GAM

Figure 22.3: Residuals of the linear regression model trained using a workflow

However, using a workflow, we can also use a recipe and specify transformations to the vari-
ables. For example, we can use the Yeo-Johnson transformation to transform the variables as
shown in the following example.

rec <- recipe(mpg ~ displacement + horsepower + weight +
acceleration + year, data = auto) %>%

step_YeoJohnson(all_numeric_predictors())
spec <- gen_additive_mod() %>%
set_engine("mgcv") %>%

299

set_mode("regression")

wf <- workflow() %>%
add_recipe(rec) %>%
add_model(spec, formula = gam_formula)

wf_model_2 <- wf %>% fit(data = auto)
model_metrics <- append_model_metrics(model_metrics, wf_model_2,
"GAM-wf-2")

show_metrics_table(model_metrics)

model rmse rsq mae

Linear model 3.409 0.809 2.619
GAM 2.835 0.868 2.084
GAM-wf 2.835 0.868 2.084
GAM-wf-2 2.800 0.871 2.075

The performance metrics are slightly better than before and if you analyze the residual plot,
there is a hint of a reduction in the heteroskedasticity. Note however that the formula now
refers to the transformed variables and not the original variables.

22.4 Using the plot function of the mgcv model

The mgcv package provides a plot function that can be used to visualize the components of
the GAM model. The following code block shows how to use this function. It is important
to explicitly load the mgcv package. Otherwise, the plot function will not be available. Note
the argument scale=0 which ensures that the plots are not scaled to the same y-axis. This is
useful to see the individual components of the model.

library(mgcv) # this is important to load the plot function
opar <- par(mfrow = c(2, 2))
plot(gam_model %>% extract_fit_engine(), scale = 0)
par(opar)

300

100 200 300 400

−
3

−
2

−
1

0
1

2

displacement

s(
di

sp
la

ce
m

en
t,1

.5
)

50 100 150 200

−
6

−
4

−
2

0
2

4
6

horsepower

s(
ho

rs
ep

ow
er

,2
.2

2)

1500 2500 3500 4500

−
5

0
5

10

weight

s(
w

ei
gh

t,2
.5

5)

10 15 20 25

0
2

4
6

acceleration

s(
ac

ce
le

ra
tio

n,
2.

67
)

Figure 22.4: Plots of the GAM model

Figure 22.4 shows that the GAM model fits spline with for displacement and horsepower
with considerable non-linearity.

We can also visualize the components from the workflow model. Figure 22.5 shows the results.
As already mentioned, the formula refers to the transformed variables, so displacment now
refers to the Yeo-Johnson transformed variable. Note, the more evenly distributed data points
in the rug plot components.

library(mgcv) # this is important to load the plot function
opar <- par(mfrow = c(2, 2))
plot(wf_model_2 %>% extract_fit_engine(), scale = 0)
par(opar)

301

2.5 2.6 2.7 2.8

−
4

−
2

0
2

4

displacement

s(
di

sp
la

ce
m

en
t,7

.3
2)

1.80 1.85 1.90 1.95

−
5

0
5

horsepower

s(
ho

rs
ep

ow
er

,1
)

2.90 2.92 2.94 2.96 2.98

−
5

0
5

10

weight

s(
w

ei
gh

t,2
.0

8)

4 5 6 7 8

−
2

0
2

4
6

acceleration

s(
ac

ce
le

ra
tio

n,
2.

48
)

Figure 22.5: Plots of the GAM model

INFO Further information

• gen_additive_mod reference
• mgcv engine in parsnip
• GAM formula notation
• Wikipedia article on GAM

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidymodels)

302

https://parsnip.tidymodels.org/reference/gen_additive_mod.html
https://parsnip.tidymodels.org/reference/details_gen_additive_mod_mgcv.html
https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/formula.gam.html
https://en.wikipedia.org/wiki/Generalized_additive_model

library(tidyverse)
library(patchwork)
auto <- ISLR2::Auto %>%
as_tibble() %>%
mutate(

cylinders = as.factor(cylinders),
origin = as.factor(origin),

) %>%
select(-name)

create a residual plot
residual_plot <- function(model_fit, data, outcome) {
result <- tibble(prediction = predict(model_fit, new_data = data)$.pred)
result["residual"] <- data[outcome] - result["prediction"]
g <- ggplot(result, aes(x = prediction, y = residual)) +

geom_point() +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(method = "loess", formula = "y ~ x") +
labs(x = "Predicted mpg", y = "Residuals")

return(g)
}

collect and show model metrics
append_model_metrics <- function(model_metrics, model_fit, model_name) {
model_metrics <- bind_rows(

model_metrics,
bind_cols(
model = model_name,
metrics(augment(model_fit, new_data = auto),
truth = mpg, estimate = .pred)

)
)
return(model_metrics)

}

show_metrics_table <- function(model_metrics) {
return(

model_metrics %>%
pivot_wider(names_from = .metric, values_from = .estimate) %>%
select(-.estimator) %>%
knitr::kable(digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

)

303

}
formula <- mpg ~ displacement + horsepower + weight +
acceleration + year

lm_model <- linear_reg() %>%
set_engine("lm") %>%
fit(formula, data = auto)

model_metrics <- append_model_metrics(tibble(), lm_model, "Linear model")
show_metrics_table(model_metrics)
residual_plot(lm_model, auto, "mpg")
gam_formula <- mpg ~ s(displacement) + s(horsepower) + s(weight) +
s(acceleration) + year

gam_model <- gen_additive_mod() %>%
set_engine("mgcv") %>%
set_mode("regression") %>%
fit(gam_formula, data = auto)

model_metrics <- append_model_metrics(model_metrics, gam_model, "GAM")
show_metrics_table(model_metrics)
g1 <- residual_plot(lm_model, auto, "mpg") +
labs(title = "Linear regression") +
ylim(-10, 15)

g2 <- residual_plot(gam_model, auto, "mpg") +
labs(title = "GAM") +
ylim(-10, 15)

g1 + g2
spec <- gen_additive_mod() %>%
set_engine("mgcv") %>%
set_mode("regression")

wf <- workflow() %>%
add_variables(outcomes = c(mpg),

predictors = c(displacement, horsepower, weight,
acceleration, year)) %>%

add_model(spec, formula = gam_formula)
wf_model <- wf %>% fit(data = auto)
model_metrics <- append_model_metrics(model_metrics, wf_model,
"GAM-wf")

show_metrics_table(model_metrics)
residual_plot(wf_model, auto, "mpg") +
labs(title = "GAM")

rec <- recipe(mpg ~ displacement + horsepower + weight +
acceleration + year, data = auto) %>%

304

step_YeoJohnson(all_numeric_predictors())
spec <- gen_additive_mod() %>%
set_engine("mgcv") %>%
set_mode("regression")

wf <- workflow() %>%
add_recipe(rec) %>%
add_model(spec, formula = gam_formula)

wf_model_2 <- wf %>% fit(data = auto)
model_metrics <- append_model_metrics(model_metrics, wf_model_2,
"GAM-wf-2")

show_metrics_table(model_metrics)
library(mgcv) # this is important to load the plot function
opar <- par(mfrow = c(2, 2))
plot(gam_model %>% extract_fit_engine(), scale = 0)
par(opar)
library(mgcv) # this is important to load the plot function
opar <- par(mfrow = c(2, 2))
plot(wf_model_2 %>% extract_fit_engine(), scale = 0)
par(opar)

305

23 Visualizing decision tree models

Decision tree models are popular because they are easy to interpret and to understand. This
lead to the development of packages to facilitate the analysis of decision trees. Here, we will
focus on the ggparty package and demonstrate some of its features using the ISLR2::Carseats
data set.

Load required libraries

library(tidyverse)
library(tidymodels)
library(ggparty)

Prepare the ISLR2::Carseats data set for classification. The Sales variable is converted to
a factor with two levels Yes and No based on the median value of Sales (7.49). The Sales
variable is then removed from the data set.

carseats <- tibble(ISLR2::Carseats) %>%
mutate(

High = factor(ifelse(Sales <= median(Sales), "No", "Yes"))
) %>%
dplyr::select(-c(Sales))

23.1 Classification Trees

We first train a model using the default settings.

model <- decision_tree(mode = "classification", engine = "rpart") %>%
fit(High ~ ., data = carseats)

LIGHTBULB Useful to know

I’ve not been able to use the ggparty functionality with a decision tree model created
using a workflow. If you use a workflow to tune a decision tree, you will need to create
a separate decision tree model with the settings from the tuning.

306

23.1.1 Visualizing the tree (graph)

To use the ggparty visualization, we need to extract the rpart model and convert it into a
format suitable for this package using the function partykit::as.party(model$fit).

Figure 23.1 shows the tree visualization created by the autoplot implementation of the party
object.

autoplot(partykit::as.party(model$fit))

Bad Medium

≥ 105.5

< 10.5

< 143.5

≥ 143.5

≥ 145< 145

≥ 10.5

≥ 126.5

< 126.5

< 121.5≥ 121.5

< 105.5

≥ 68.5

≥ 91.5< 91.5

< 68.5

< 8.5

< 125

≥ 86.5

Yes No

< 86.5

≥ 125

≥ 8.5

Good

≥ 135< 135

ShelveLoc

Price

Advertising

CompPrice

Price

Price

CompPrice

Age

Price Advertising

CompPrice

Price

Urban

Price

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Figure 23.1: Decision tree visualization of default model (autoplot)

There are many options to customize the visualization. Figure 23.2 shows the tree visualiza-
tion created by the ggparty implementation of the party object. The pie charts show the
distribution of the two classes and the number of training data points in the terminal nodes.

ggparty::ggparty(partykit::as.party(model$fit)) +
ggparty::geom_edge() +
ggparty::geom_edge_label() +
ggparty::geom_node_label(aes(label = splitvar), ids = "inner") +
ggparty::geom_node_plot(gglist = list(

geom_bar(aes(x = "", fill = High)),
coord_polar("y"),
theme_void()))

307

Bad Medium

≥ 105.5

< 10.5

< 143.5

≥ 143.5

≥ 145< 145

≥ 10.5

≥ 126.5

< 126.5

< 121.5≥ 121.5

< 105.5

≥ 68.5

≥ 91.5< 91.5

< 68.5

< 8.5

< 125

≥ 86.5

Yes No

< 86.5

≥ 125

≥ 8.5

Good

≥ 135< 135

ShelveLoc

Price

Advertising

CompPrice

Price

Price

CompPrice

Age

Price Advertising

CompPrice

Price

Urban

Price

Figure 23.2: Decision tree visualization using pie charts

23.1.2 Visualizing the tree (text)

The conversion of the rpart model into a party object also allows us to print the tree as text
in a format that is clearer than the default rpart output.

tree_carseats_party <- partykit::as.party(model$fit)
tree_carseats_party

Model formula:
High ~ CompPrice + Income + Advertising + Population + Price +

ShelveLoc + Age + Education + Urban + US

Fitted party:
[1] root
| [2] ShelveLoc in Bad, Medium
| | [3] Price >= 105.5
| | | [4] Advertising < 10.5
| | | | [5] CompPrice < 143.5: No (n = 121, err = 11.6%)
| | | | [6] CompPrice >= 143.5
| | | | | [7] Price >= 145: No (n = 7, err = 0.0%)
| | | | | [8] Price < 145: Yes (n = 16, err = 25.0%)
| | | [9] Advertising >= 10.5
| | | | [10] Price >= 126.5: No (n = 32, err = 18.8%)

308

| | | | [11] Price < 126.5
| | | | | [12] CompPrice < 121.5: No (n = 10, err = 20.0%)
| | | | | [13] CompPrice >= 121.5: Yes (n = 21, err = 0.0%)
| | [14] Price < 105.5
| | | [15] Age >= 68.5
| | | | [16] Price >= 91.5: No (n = 15, err = 13.3%)
| | | | [17] Price < 91.5: Yes (n = 8, err = 37.5%)
| | | [18] Age < 68.5
| | | | [19] Advertising < 8.5
| | | | | [20] CompPrice < 125
| | | | | | [21] Price >= 86.5
| | | | | | | [22] Urban in Yes: No (n = 18, err = 16.7%)
| | | | | | | [23] Urban in No: Yes (n = 7, err = 28.6%)
| | | | | | [24] Price < 86.5: Yes (n = 14, err = 14.3%)
| | | | | [25] CompPrice >= 125: Yes (n = 12, err = 0.0%)
| | | | [26] Advertising >= 8.5: Yes (n = 34, err = 2.9%)
| [27] ShelveLoc in Good
| | [28] Price >= 135: No (n = 17, err = 41.2%)
| | [29] Price < 135: Yes (n = 68, err = 4.4%)

Number of inner nodes: 14
Number of terminal nodes: 15

Let’s look at node [7]. The path is

• ShelveLoc in Bad, Medium
• Price >= 105.5
• Advertising < 10.5
• CompPrice >= 143.5
• Price >= 145

The distribution at that node is:

No (n = 7, err = 0.0%)

We predict that High is No with 0% error.

23.1.3 Visualizing the tree (rules)

The example above shows that Price occurred twice in the decision path. We can combine
the two rules into one rule.

309

It can be difficult to extract the decision path for complex trees. The rpart.plot package
has a function to convert the tree into a set of rules:

• ShelveLoc in Bad, Medium
• Advertising < 10.5
• CompPrice >= 143.5
• Price >= 145

The function rpart.plot::rpart.rules can be used to extract the rules from the tree.

rpart.plot::rpart.rules(model$fit, style="tallw")

Abbreviated output, the first rule corresponds to node [7].

High is 0.00 when
ShelveLoc is Bad or Medium
Price >= 145
Advertising < 10.5
CompPrice >= 144
##
High is 0.12 when
ShelveLoc is Bad or Medium
Price >= 106
Advertising < 10.5
CompPrice < 144
##
High is 0.13 when
ShelveLoc is Bad or Medium
Price is 92 to 106
Age >= 69
....

23.2 Regression Trees

We now train a regression model to predict Sales in the ISLR2::Carseats dataset using the
default settings.

model <- decision_tree(mode = "regression", engine = "rpart") %>%
fit(Sales ~ ., data = ISLR2::Carseats)

310

23.2.1 Visualizing the tree (graph)

Figure 23.3 shows the tree visualization created by the autoplot implementation of the party
object.

ggparty::ggparty(partykit::as.party(model$fit), horizontal = TRUE) +
ggparty::geom_edge() +
ggparty::geom_edge_label() +
ggparty::geom_node_label(aes(label = splitvar), ids = "inner") +
ggparty::geom_node_plot(gglist = list(

geom_histogram(aes(x = Sales), binwidth = 3),
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank())))

311

Bad Medium

≥ 105.5

Bad

< 196.5

≥ 196.5

Medium
< 5.5

≥ 127

< 127

≥ 5.5 < 121.5

≥ 121.5 ≥ 127

< 127

< 105.5

≥ 54.5

< 105.5

Bad

Medium

≥ 105.5

< 54.5
< 57.5

≥ 57.5 Bad

MediumGood

≥ 109.5

< 13.5

≥ 142.5

< 142.5 < 40.5

≥ 40.5

≥ 13.5

< 109.5

ShelveLoc

Price

ShelveLoc

Population

Advertising

Price

CompPrice

Price

Age

Income

ShelveLoc

Income

ShelveLoc

Price

Advertising

Price

Income

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

0
10
20
30

0 5 10 15

Figure 23.3: Decision tree visualization of regression model

312

INFO Further information

There are many ways of customizing the visualization and you can find plenty of examples
and resources on the internet. See the ggparty wiki.

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidyverse)
library(tidymodels)
library(ggparty)
carseats <- tibble(ISLR2::Carseats) %>%
mutate(

High = factor(ifelse(Sales <= median(Sales), "No", "Yes"))
) %>%
dplyr::select(-c(Sales))

model <- decision_tree(mode = "classification", engine = "rpart") %>%
fit(High ~ ., data = carseats)

autoplot(partykit::as.party(model$fit))
ggparty::ggparty(partykit::as.party(model$fit)) +
ggparty::geom_edge() +
ggparty::geom_edge_label() +
ggparty::geom_node_label(aes(label = splitvar), ids = "inner") +
ggparty::geom_node_plot(gglist = list(

geom_bar(aes(x = "", fill = High)),
coord_polar("y"),
theme_void()))

tree_carseats_party <- partykit::as.party(model$fit)
tree_carseats_party
model <- decision_tree(mode = "regression", engine = "rpart") %>%
fit(Sales ~ ., data = ISLR2::Carseats)

ggparty::ggparty(partykit::as.party(model$fit), horizontal = TRUE) +
ggparty::geom_edge() +
ggparty::geom_edge_label() +
ggparty::geom_node_label(aes(label = splitvar), ids = "inner") +
ggparty::geom_node_plot(gglist = list(

geom_histogram(aes(x = Sales), binwidth = 3),
theme(

313

https://github.com/martin-borkovec/ggparty/wiki

axis.title.x = element_blank(),
axis.title.y = element_blank())))

314

24 Variable or feature importance

variable importance, also known as feature importance, is a measure of the influence of a
feature on the prediction of a model. It helps you understand why a model makes a specific
prediction and explain it. It can also help you to identify potential bias and errors in the
model.

The approaches to calculate variable importance can be grouped into local and global measures
of variable importance. Local measures are calculated for a single prediction, while global
measures are calculated for the entire dataset.

In this chapter, we will focus on global measures of variable importance. We will use the vip
package to calculate variable importance for a random forest model trained on the mtcars
dataset. The vip package provides a unified interface to calculate variable importance for
different models and datasets. It supports different methods to calculate variable importance,
such as permutation-based importance, SHAP values, and others.

Load required libraries

library(tidyverse)
library(tidymodels)
library(kableExtra)
library(patchwork)
library(vip)
library(ranger)
library(pdp)

24.1 The vip package

The vip package provides a unified interface to calculate variable importance for different
models and datasets.

315

24.2 Model specific measures of variable importance

24.2.1 Linear model

A common measure of variable importance in linear models is the 𝑡-statistic.

Let’s start with a linear regression model trained on the mtcars dataset to predict mpg.

mtcars_rec <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_numeric_predictors())

lm_fit <- workflow() %>%
add_recipe(mtcars_rec) %>%
add_model(linear_reg(mode = "regression")) %>%
fit(mtcars)

To use the vip package, we need to extract the fit engine from the workflow and pass it to the
vip function. Figure 24.1 shows the resulting graph:

lm_fit %>%
extract_fit_engine() %>%
vip()

cyl
vs

carb
gear
drat
disp

hp
qsec

am
wt

0.0 0.5 1.0 1.5 2.0
Importance

Figure 24.1: Variable importance for a linear regression model (t-statistic)

If we compare the graph with the coefficients of the linear model, we see that the graph shows
the absolute values of the 𝑡-statistic of the coefficients.

316

lm_fit %>%
extract_fit_engine() %>%
summary() %>%
pluck(coefficients)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.0906250 0.4684931 42.8835050 6.185024e-22
cyl -0.1990240 1.8663298 -0.1066392 9.160874e-01
disp 1.6527522 2.2132353 0.7467585 4.634887e-01
hp -1.4728757 1.4925162 -0.9868407 3.349553e-01
drat 0.4208515 0.8743992 0.4813036 6.352779e-01
wt -3.6352668 1.8536038 -1.9611887 6.325215e-02
qsec 1.4671532 1.3059782 1.1234133 2.739413e-01
vs 0.1601576 1.0607063 0.1509915 8.814235e-01
am 1.2575703 1.0262499 1.2254035 2.339897e-01
gear 0.4835664 1.1017333 0.4389142 6.652064e-01
carb -0.3221020 1.3386010 -0.2406258 8.121787e-01

The most influentials features are, unsurprisingly, wt, am, qsec, and hp.

24.2.2 Random forests

Let’s begin with training a random forest model using the ranger package. By setting the
importance argument, the ranger model will collect information about the effect of each
feature on improving the model’s performance at each split in the decision trees.

rf_spec <- rand_forest(mtry = 2, mode = "regression") %>%
set_engine("ranger", importance = "impurity")

wf <- workflow() %>%
add_recipe(mtcars_rec) %>%
add_model(rf_spec)

rf_fit <- wf %>% fit(mtcars)

rf_fit %>%
extract_fit_engine() %>%
vip()

317

am
gear
qsec
carb

vs
drat
cyl
hp

disp
wt

0 50 100 150 200
Importance

Figure 24.2: Variable importance for a linear regression model (random forest)

The result is shown in Figure 24.2. This time, different features are considered most important:
disp, wt, hp, and cyl.

24.3 General approaches to calculate variable importance

While the model-specific measures of variable importance are useful, more general approaches
were developed to determine variable importance for a wider range of models.

Figure 24.3 shows the variable importance calculated using the FIRM method (left) and the
permutation method (right).

extract the RF model from the workflow
rf_model <- rf_fit %>% extract_fit_engine()

Define a prediction wrapper function
pfun <- function(object, newdata) {
return(predict(object, data = newdata)$predictions)

}
vis_firm <- vi(rf_model, method = "firm", target = "mpg",
metric = "rmse", pred_wrapper = pfun,
train = bake(prep(mtcars_rec), new_data = NULL))

g1 <- vip(vis_firm) + labs(title = "FIRM")
vis_permute <- vi(rf_model, method = "permute", target = "mpg",
metric = "rmse", nsim = 10, pred_wrapper = pfun,
train = bake(prep(mtcars_rec), new_data = NULL))

318

g2 <- vip(vis_permute) + labs(title = "Permutation")
g1 + g2

qsec
am

gear
drat
carb

vs
disp

hp
cyl
wt

0.0 0.3 0.6 0.9 1.2
Importance

FIRM

am
qsec

vs
gear
carb
drat
cyl
hp
wt

disp

0.00 0.25 0.50 0.75 1.00
Importance

Permutation

Figure 24.3: Variable importance determined using FIRM (left) and permutation approach
(right)

The FIRM method looks at the effect of each feature on the prediction of the model. It is
based on partial dependency plots. The effect of each predictor is determined by measuring
the variation in the model’s prediction when the feature is changed while keeping all other
features constant. Figure 24.4 shows the partial dependency plots for each feature. The
individual graphs are ordered in decreasing importance according to the FIRM method.

combine effects into a single data frame
effects <- attr(vis_firm, which = "effects")
effect_data <- tibble()
for (name in vis_firm$Variable) {
effect <- effects[[name]]
effect_data <- bind_rows(

effect_data,
tibble(
name = name,
predictor = effect[[name]],
yhat = effect$yhat

)
)

}
order the predictors by FIRM importance
effect_data <- effect_data %>%
mutate(name = factor(name, levels = vis_firm$Variable))

319

ggplot(effect_data, aes(x = predictor, y = yhat)) +
geom_line() +
facet_wrap(~name, ncol = 5)

carb drat gear am qsec

wt cyl hp disp vs

−2 −1 0 1 2 3 −2 −1 0 1 2 3 −2 −1 0 1 2 3 −2 −1 0 1 2 3 −2 −1 0 1 2 3

19

20

21

22

19

20

21

22

predictor

yh
at

Figure 24.4: Partial dependency plots for each feature

The permutation method is a more straightforward approach. It calculates the variable im-
portance by permuting the values of each feature and measuring the change in the model’s
performance. In our calculation of vis_permute we used nsim=10 permutations. The individ-
ual results are shown in Figure 24.5.

g1 <- vip(vis_permute, geom = "boxplot", all_permutations = TRUE,
jitter = TRUE)

g2 <- vip(vis_permute, all_permutations = TRUE, jitter = TRUE)
g1 + g2

320

am

qsec

vs

gear

carb

drat

cyl

hp

wt

disp

0.0 0.5 1.0
Importance

am

qsec

vs

gear

carb

drat

cyl

hp

wt

disp

0.0 0.5 1.0
Importance

Figure 24.5: Different visualizations of the results of the permutation method

INFO Further information

Additional information can be found in the following resources:

• vip package documentation
• vip overview

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidyverse)
library(tidymodels)
library(kableExtra)
library(patchwork)
library(vip)
library(ranger)
library(pdp)
mtcars_rec <- recipe(mpg ~ ., data = mtcars) %>%

321

https://koalaverse.github.io/vip/
https://koalaverse.github.io/vip/articles/vip.html

step_normalize(all_numeric_predictors())
lm_fit <- workflow() %>%
add_recipe(mtcars_rec) %>%
add_model(linear_reg(mode = "regression")) %>%
fit(mtcars)

lm_fit %>%
extract_fit_engine() %>%
vip()

lm_fit %>%
extract_fit_engine() %>%
summary() %>%
pluck(coefficients)

rf_spec <- rand_forest(mtry = 2, mode = "regression") %>%
set_engine("ranger", importance = "impurity")

wf <- workflow() %>%
add_recipe(mtcars_rec) %>%
add_model(rf_spec)

rf_fit <- wf %>% fit(mtcars)

rf_fit %>%
extract_fit_engine() %>%
vip()

extract the RF model from the workflow
rf_model <- rf_fit %>% extract_fit_engine()

Define a prediction wrapper function
pfun <- function(object, newdata) {
return(predict(object, data = newdata)$predictions)

}
vis_firm <- vi(rf_model, method = "firm", target = "mpg",
metric = "rmse", pred_wrapper = pfun,
train = bake(prep(mtcars_rec), new_data = NULL))

g1 <- vip(vis_firm) + labs(title = "FIRM")
vis_permute <- vi(rf_model, method = "permute", target = "mpg",
metric = "rmse", nsim = 10, pred_wrapper = pfun,
train = bake(prep(mtcars_rec), new_data = NULL))

g2 <- vip(vis_permute) + labs(title = "Permutation")
g1 + g2
combine effects into a single data frame
effects <- attr(vis_firm, which = "effects")
effect_data <- tibble()

322

for (name in vis_firm$Variable) {
effect <- effects[[name]]
effect_data <- bind_rows(

effect_data,
tibble(
name = name,
predictor = effect[[name]],
yhat = effect$yhat

)
)

}
order the predictors by FIRM importance
effect_data <- effect_data %>%
mutate(name = factor(name, levels = vis_firm$Variable))

ggplot(effect_data, aes(x = predictor, y = yhat)) +
geom_line() +
facet_wrap(~name, ncol = 5)

g1 <- vip(vis_permute, geom = "boxplot", all_permutations = TRUE,
jitter = TRUE)

g2 <- vip(vis_permute, all_permutations = TRUE, jitter = TRUE)
g1 + g2

323

Part VIII

Examples

324

25 Model tuning

In this example, we will

• load and preprocess data
• define a workflow with tunable parameters
• tune the hyperparameters using Bayesian optimization
• train the final model
• evaluate the model using cross-validation and holdout data

using the Loan prediction dataset to illustrate the whole process.

Load the required packages:

library(tidyverse)
library(tidymodels)

Load and preprocess the data:

file <- "https://gedeck.github.io/DS-6030/datasets/loan_prediction.csv"
data <- read_csv(file, show_col_types = FALSE) %>%
drop_na() %>%
mutate(

Gender = as.factor(Gender),
Married = as.factor(Married),
Dependents = gsub("\\+", "", Dependents) %>% as.numeric(),
Education = as.factor(Education),
Self_Employed = as.factor(Self_Employed),
Credit_History = as.factor(Credit_History),
Property_Area = as.factor(Property_Area),
Loan_Status = factor(Loan_Status, levels = c("N", "Y"),
labels = c("No", "Yes"))

) %>%
select(-Loan_ID)

Split dataset into training and holdout data, prepare for cross-validation:

325

https://gedeck.github.io/DS-6030/datasets/loan_prediction.csv

set.seed(123)
data_split <- initial_split(data, prop = 0.8, strata = Loan_Status)
train_data <- training(data_split)
holdout_data <- testing(data_split)

resamples <- vfold_cv(train_data, v = 10, strata = Loan_Status)
cv_metrics <- metric_set(roc_auc, accuracy)
cv_control <- control_resamples(save_pred = TRUE)

Define the recipe, the model specification (elasticnet logistic regression), and combine them
into a workflow:

formula <- Loan_Status ~ Gender + Married + Dependents + Education +
Self_Employed + ApplicantIncome + CoapplicantIncome + LoanAmount +
Loan_Amount_Term + Credit_History + Property_Area

recipe_spec <- recipe(formula, data = train_data) %>%
step_dummy(all_nominal(), -all_outcomes())

model_spec <- logistic_reg(engine = "glmnet", mode = "classification",
penalty = tune(), mixture = tune())

wf <- workflow() %>%
add_model(model_spec) %>%
add_recipe(recipe_spec)

Tune the penalty and mixture hyperparameters using Bayesian hyperparameter optimiza-
tion:

parameters <- extract_parameter_set_dials(wf) %>%
update(penalty = penalty(c(-4, -1)))

tune_wf <- tune_bayes(wf, resamples = resamples, metrics = cv_metrics,
param_info = parameters, iter = 25)

! No improvement for 10 iterations; returning current results.

The autoplot of the tune_bayes object (Figure 25.1) shows the ROC-AUC for different values
of the penalty and mixture hyperparameters. We can see that the best roc_auc is obtained
with penalty and mixture values inside the tuning range. We don’t need to adjust the sampling
ranges for the hyperparameters.

326

autoplot(tune_wf)

Amount of Regularization (log−10) Proportion of Lasso Penalty
accuracy

roc_auc

−4 −3 −2 −1 0.25 0.50 0.75 1.00

0.799

0.800

0.801

0.72

0.73

0.74

0.75

Figure 25.1: Autoplot shows the ROC-AUC for different values of the penalty and mixture
hyperparameters.

Finalize the workflow:

best_parameter <- select_best(tune_wf, metric = "roc_auc")
best_wf <- finalize_workflow(wf, best_parameter)

The best roc_auc is obtained with a penalty of best_parameter['penalty'] =
0.0632250887522679 and a mixture of best_parameter['mixture'] = 0.760072101599665.

Use the tuned workflow for cross-validation and training the final model using the full
dataset:

result_cv <- fit_resamples(best_wf, resamples,
metrics = cv_metrics, control = cv_control)

fitted_model <- best_wf %>% fit(train_data)

Estimate model performance using the cross-validation results and the holdout data:

327

Table 25.1: Model performance metrics

result accuracy roc_auc
Cross-validation 0.802 0.757
Holdout 0.835 0.741

cv_results <- collect_metrics(result_cv) %>%
select(.metric, mean) %>%
rename(.estimate = mean) %>%
mutate(result = "Cross-validation")

holdout_predictions <- augment(fitted_model, new_data = holdout_data)
holdout_results <- bind_rows(
c(roc_auc(holdout_predictions, Loan_Status, .pred_Yes,

event_level = "second")),
c(accuracy(holdout_predictions, Loan_Status, .pred_class))

) %>%
select(-.estimator) %>%
mutate(result = "Holdout")

The performance metrics are summarized in the following table.

bind_rows(
cv_results,
holdout_results

) %>%
pivot_wider(names_from = .metric, values_from = .estimate) %>%
kableExtra::kbl(caption = "Model performance metrics", digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidyverse)
library(tidymodels)
file <- "https://gedeck.github.io/DS-6030/datasets/loan_prediction.csv"
data <- read_csv(file, show_col_types = FALSE) %>%

328

drop_na() %>%
mutate(

Gender = as.factor(Gender),
Married = as.factor(Married),
Dependents = gsub("\\+", "", Dependents) %>% as.numeric(),
Education = as.factor(Education),
Self_Employed = as.factor(Self_Employed),
Credit_History = as.factor(Credit_History),
Property_Area = as.factor(Property_Area),
Loan_Status = factor(Loan_Status, levels = c("N", "Y"),
labels = c("No", "Yes"))

) %>%
select(-Loan_ID)

set.seed(123)
data_split <- initial_split(data, prop = 0.8, strata = Loan_Status)
train_data <- training(data_split)
holdout_data <- testing(data_split)

resamples <- vfold_cv(train_data, v = 10, strata = Loan_Status)
cv_metrics <- metric_set(roc_auc, accuracy)
cv_control <- control_resamples(save_pred = TRUE)
formula <- Loan_Status ~ Gender + Married + Dependents + Education +
Self_Employed + ApplicantIncome + CoapplicantIncome + LoanAmount +
Loan_Amount_Term + Credit_History + Property_Area

recipe_spec <- recipe(formula, data = train_data) %>%
step_dummy(all_nominal(), -all_outcomes())

model_spec <- logistic_reg(engine = "glmnet", mode = "classification",
penalty = tune(), mixture = tune())

wf <- workflow() %>%
add_model(model_spec) %>%
add_recipe(recipe_spec)

parameters <- extract_parameter_set_dials(wf) %>%
update(penalty = penalty(c(-4, -1)))

tune_wf <- tune_bayes(wf, resamples = resamples, metrics = cv_metrics,
param_info = parameters, iter = 25)

autoplot(tune_wf)
best_parameter <- select_best(tune_wf, metric = "roc_auc")
best_wf <- finalize_workflow(wf, best_parameter)
result_cv <- fit_resamples(best_wf, resamples,
metrics = cv_metrics, control = cv_control)

329

fitted_model <- best_wf %>% fit(train_data)
cv_results <- collect_metrics(result_cv) %>%
select(.metric, mean) %>%
rename(.estimate = mean) %>%
mutate(result = "Cross-validation")

holdout_predictions <- augment(fitted_model, new_data = holdout_data)
holdout_results <- bind_rows(
c(roc_auc(holdout_predictions, Loan_Status, .pred_Yes,

event_level = "second")),
c(accuracy(holdout_predictions, Loan_Status, .pred_class))

) %>%
select(-.estimator) %>%
mutate(result = "Holdout")

bind_rows(
cv_results,
holdout_results

) %>%
pivot_wider(names_from = .metric, values_from = .estimate) %>%
kableExtra::kbl(caption = "Model performance metrics", digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

330

26 Threshold selection

In this example, we will

• load and preprocess data
• define a workflow
• use cross-validation to determine a threshold using the F-statistic
• train the final model
• evaluate the model using cross-validation and holdout data
• predict

using the Loan prediction dataset to illustrate the whole process.

Load the required packages:

library(tidyverse)
library(tidymodels)

Load and preprocess the data:

file <- "https://gedeck.github.io/DS-6030/datasets/loan_prediction.csv"
data <- read_csv(file, show_col_types = FALSE) %>%
drop_na() %>%
mutate(

Gender = as.factor(Gender),
Married = as.factor(Married),
Dependents = gsub("\\+", "", Dependents) %>% as.numeric(),
Education = as.factor(Education),
Self_Employed = as.factor(Self_Employed),
Credit_History = as.factor(Credit_History),
Property_Area = as.factor(Property_Area),
Loan_Status = factor(Loan_Status, levels = c("N", "Y"),
labels = c("No", "Yes"))

) %>%
select(-Loan_ID)

Split dataset into training and holdout data, prepare for cross-validation:

331

https://gedeck.github.io/DS-6030/datasets/loan_prediction.csv

set.seed(123)
data_split <- initial_split(data, prop = 0.8, strata = Loan_Status)
train_data <- training(data_split)
holdout_data <- testing(data_split)

resamples <- vfold_cv(train_data, v = 10, strata = Loan_Status)
cv_metrics <- metric_set(roc_auc, accuracy)
cv_control <- control_resamples(save_pred = TRUE)

Define the recipe, the model specification (elasticnet logistic regression), and combine them
into a workflow:

formula <- Loan_Status ~ Gender + Married + Dependents + Education +
Self_Employed + ApplicantIncome + CoapplicantIncome + LoanAmount +
Loan_Amount_Term + Credit_History + Property_Area

recipe_spec <- recipe(formula, data = train_data) %>%
step_dummy(all_nominal(), -all_outcomes())

model_spec <- logistic_reg(engine = "glm", mode = "classification")

wf <- workflow() %>%
add_model(model_spec) %>%
add_recipe(recipe_spec)

Use the workflow for cross-validation and training the final model using the full dataset:

result_cv <- fit_resamples(wf, resamples, metrics = cv_metrics,
control = cv_control)

fitted_model <- wf %>% fit(train_data)

Estimate model performance using the cross-validation results and the holdout data:

cv_results <- collect_metrics(result_cv) %>%
select(.metric, mean) %>%
rename(.estimate = mean) %>%
mutate(result = "Cross-validation", threshold = 0.5)

holdout_predictions <- augment(fitted_model, new_data = holdout_data)
holdout_results <- bind_rows(
c(roc_auc(holdout_predictions, Loan_Status, .pred_Yes,

event_level = "second")),
c(accuracy(holdout_predictions, Loan_Status, .pred_class))) %>%

332

select(-.estimator) %>%
mutate(result = "Holdout", threshold = 0.5)

performance <- probably::threshold_perf(
result_cv %>% collect_predictions(),
Loan_Status, .pred_Yes, seq(0.1, 0.9, 0.01), event_level = "second",
metrics = metric_set(j_index, f_meas, kap))

max_values <- performance %>%
arrange(desc(.threshold)) %>%
group_by(.metric) %>%
filter(.estimate == max(.estimate)) %>%
filter(row_number() == 1)

ggplot(performance, aes(x = .threshold, y = .estimate, color = .metric)) +
geom_line() +
geom_vline(data = max_values, aes(xintercept = .threshold, color = .metric))

0.25

0.50

0.75

0.25 0.50 0.75
.threshold

.e
st

im
at

e

.metric

f_meas

j_index

kap

Figure 26.1: Performance metrics as a function of the classification threshold.

We decide to select the threshold that maximizes the F-measure:

333

threshold <- max_values %>%
filter(.metric == "f_meas") %>%
pull(.threshold)

We can now calculate the performance metrics using predictions at the selected threshold.

cv_predictions <- collect_predictions(result_cv) %>%
mutate(

.pred_class = factor(ifelse(.pred_Yes >= threshold, "Yes", "No"))
)

cv_threshold_results <- bind_rows(
c(accuracy(cv_predictions, Loan_Status, .pred_class))

) %>%
select(-.estimator) %>%
mutate(result = "Cross-validation", threshold = threshold)

holdout_predictions <- augment(fitted_model, new_data = holdout_data) %>%
mutate(

.pred_class = factor(ifelse(.pred_Yes >= threshold, "Yes", "No"))
)

holdout_threshold_results <- bind_rows(
c(accuracy(holdout_predictions, Loan_Status, .pred_class))

) %>%
select(-.estimator) %>%
mutate(result = "Holdout", threshold = threshold)

The performance metrics are summarized in the following table.

bind_rows(
cv_results,
holdout_results,
cv_threshold_results,
holdout_threshold_results,

) %>%
pivot_wider(names_from = .metric, values_from = .estimate) %>%
kableExtra::kbl(caption = "Model performance metrics", digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

We can see that the reduced threshold leads to a higher accuracy.

334

Table 26.1: Model performance metrics

result threshold accuracy roc_auc
Cross-validation 0.50 0.799 0.752
Holdout 0.50 0.825 0.733
Cross-validation 0.46 0.802 NA
Holdout 0.46 0.835 NA

Code

The code of this chapter is summarized here.

knitr::opts_chunk$set(echo = TRUE, cache = TRUE, autodep = TRUE,
fig.align = "center")

library(tidyverse)
library(tidymodels)
file <- "https://gedeck.github.io/DS-6030/datasets/loan_prediction.csv"
data <- read_csv(file, show_col_types = FALSE) %>%
drop_na() %>%
mutate(

Gender = as.factor(Gender),
Married = as.factor(Married),
Dependents = gsub("\\+", "", Dependents) %>% as.numeric(),
Education = as.factor(Education),
Self_Employed = as.factor(Self_Employed),
Credit_History = as.factor(Credit_History),
Property_Area = as.factor(Property_Area),
Loan_Status = factor(Loan_Status, levels = c("N", "Y"),
labels = c("No", "Yes"))

) %>%
select(-Loan_ID)

set.seed(123)
data_split <- initial_split(data, prop = 0.8, strata = Loan_Status)
train_data <- training(data_split)
holdout_data <- testing(data_split)

resamples <- vfold_cv(train_data, v = 10, strata = Loan_Status)
cv_metrics <- metric_set(roc_auc, accuracy)
cv_control <- control_resamples(save_pred = TRUE)
formula <- Loan_Status ~ Gender + Married + Dependents + Education +
Self_Employed + ApplicantIncome + CoapplicantIncome + LoanAmount +
Loan_Amount_Term + Credit_History + Property_Area

335

recipe_spec <- recipe(formula, data = train_data) %>%
step_dummy(all_nominal(), -all_outcomes())

model_spec <- logistic_reg(engine = "glm", mode = "classification")

wf <- workflow() %>%
add_model(model_spec) %>%
add_recipe(recipe_spec)

result_cv <- fit_resamples(wf, resamples, metrics = cv_metrics,
control = cv_control)

fitted_model <- wf %>% fit(train_data)
cv_results <- collect_metrics(result_cv) %>%
select(.metric, mean) %>%
rename(.estimate = mean) %>%
mutate(result = "Cross-validation", threshold = 0.5)

holdout_predictions <- augment(fitted_model, new_data = holdout_data)
holdout_results <- bind_rows(
c(roc_auc(holdout_predictions, Loan_Status, .pred_Yes,

event_level = "second")),
c(accuracy(holdout_predictions, Loan_Status, .pred_class))) %>%
select(-.estimator) %>%
mutate(result = "Holdout", threshold = 0.5)

performance <- probably::threshold_perf(
result_cv %>% collect_predictions(),
Loan_Status, .pred_Yes, seq(0.1, 0.9, 0.01), event_level = "second",
metrics = metric_set(j_index, f_meas, kap))

max_values <- performance %>%
arrange(desc(.threshold)) %>%
group_by(.metric) %>%
filter(.estimate == max(.estimate)) %>%
filter(row_number() == 1)

ggplot(performance, aes(x = .threshold, y = .estimate, color = .metric)) +
geom_line() +
geom_vline(data = max_values, aes(xintercept = .threshold, color = .metric))

threshold <- max_values %>%
filter(.metric == "f_meas") %>%
pull(.threshold)

cv_predictions <- collect_predictions(result_cv) %>%
mutate(

.pred_class = factor(ifelse(.pred_Yes >= threshold, "Yes", "No"))
)

cv_threshold_results <- bind_rows(

336

c(accuracy(cv_predictions, Loan_Status, .pred_class))
) %>%
select(-.estimator) %>%
mutate(result = "Cross-validation", threshold = threshold)

holdout_predictions <- augment(fitted_model, new_data = holdout_data) %>%
mutate(

.pred_class = factor(ifelse(.pred_Yes >= threshold, "Yes", "No"))
)

holdout_threshold_results <- bind_rows(
c(accuracy(holdout_predictions, Loan_Status, .pred_class))

) %>%
select(-.estimator) %>%
mutate(result = "Holdout", threshold = threshold)

bind_rows(
cv_results,
holdout_results,
cv_threshold_results,
holdout_threshold_results,

) %>%
pivot_wider(names_from = .metric, values_from = .estimate) %>%
kableExtra::kbl(caption = "Model performance metrics", digits = 3) %>%
kableExtra::kable_styling(full_width = FALSE)

337

A Models

As we’ve seen in Chapter 8 and Chapter 10, a model requires first defining the model type
(e.g. linear_reg) and then select a suitable engine (e.g. lm).

The following packages provide model engines for classification, regression, and censored re-
gression compatible with the parsnip format:

• parsnip: parsnip.tidymodels.org
• modeltime: business-science.github.io/modeltime/ for time series forecasting

Use the command show_engines(...) to get an overview of all available engines for a given
model type.

library(parsnip)
show_engines("linear_reg")

A tibble: 8 x 2
engine mode
<chr> <chr>

1 lm regression
2 glm regression
3 glmnet regression
4 stan regression
5 spark regression
6 keras regression
7 brulee regression
8 quantreg quantile regression

Some of the model types have common tunable parameters, e.g. the number of nearest neigh-
bors in a k-nearest neighbor model. These parameters can be set when defining the model.
Parsnip will translate these into the engine specific paramters. For example, the following
code defines a k-nearest neighbor model with 5 neighbors and a distance weighting function:

nearest_neighbor(mode = "regression", neighbors = 5,
weight_func = "triangular") %>%
set_engine("kknn") %>%
translate()

338

https://parsnip.tidymodels.org/
https://business-science.github.io/modeltime/

K-Nearest Neighbor Model Specification (regression)

Main Arguments:
neighbors = 5
weight_func = triangular

Computational engine: kknn

Model fit template:
kknn::train.kknn(formula = missing_arg(), data = missing_arg(),

ks = min_rows(5, data, 5), kernel = "triangular")

The translate function returns information about how the actual engine is called. In this
case, the neighbors parameter is mapped to ks=min_rows(5, data, 5) and weight_func is
mapped to kernel="triangular". This information will be useful when you want to under-
stand more about the engine and read the documentation of the engine package.

In the following, we cover a selection of models and engines relevant for DS-6030. A full list of
all available parsnip models can be found here:https://www.tidymodels.org/find/parsnip/

A.1 Non-informative model null_model (regression and
classification)

While not an actual model, training and evaluating a non-informative model is a good baseline
to compare other models against. A non-informative model always predicts the mean of the
response variable for regression models and the most frequent class for classification models.
See https://parsnip.tidymodels.org/reference/null_model.html for details.

null_model(mode = "regression") %>%
set_engine("parsnip")

Null Model Specification (regression)

Computational engine: parsnip

null_model(mode = "classification") %>%
set_engine("parsnip")

Null Model Specification (classification)

Computational engine: parsnip

339

https://www.tidymodels.org/find/parsnip/
https://parsnip.tidymodels.org/reference/null_model.html

A.2 Linear regression models linear_reg (regression)

See https://parsnip.tidymodels.org/reference/linear_reg.html for details.

A.2.1 lm engine (default)

linear_reg(mode = "regression") %>%
set_engine("lm")

Linear Regression Model Specification (regression)

Computational engine: lm

No tunable parameters.

A.2.2 glm engine (generalized linear model)

The glm engine is a more flexible version of the lm engine. It allows to specify the distribution
of the response variable (e.g. gaussian for linear regression, binomial for logistic regression,
poisson for count data, etc.) and the link function (e.g. identity for linear regression, logit
for logistic regression, log for count data, etc.).

linear_reg(mode = "regression") %>%
set_engine("glm")

Linear Regression Model Specification (regression)

Computational engine: glm

No tunable parameters.

LIGHTBULB Useful to know

When using the glm or glmnet engine, you might come across this warning:

Warning: glm.fit: fitted probabilities numerically 0 or 1
occurred from the logistic model

In general, you can ignore it. It means that the model is very certain about the predicted

340

https://parsnip.tidymodels.org/reference/linear_reg.html

class.

A.2.3 glmnet engine (regularized linear regression)

linear_reg(mode = "regression") %>%
set_engine("glmnet")

Linear Regression Model Specification (regression)

Computational engine: glmnet

glmnet supports L1 and L2 regularization. Here is an example with a mixture of L1 and L2
regularization (elastic net) and a regularization parameter of 0.01:

linear_reg(mode = "regression", penalty = 0.01, mixture = 0.5) %>%
set_engine("glmnet")

Linear Regression Model Specification (regression)

Main Arguments:
penalty = 0.01
mixture = 0.5

Computational engine: glmnet

• See Chapter 21 for more details
• https://parsnip.tidymodels.org/reference/glmnet-details.html

A.3 Partial least squares regression pls (regression)

See https://parsnip.tidymodels.org/reference/pls.html for details.

A.3.1 mixOmics engine (default)

This engine requires installation of the mixOmics package. See http://mixomics.org/ for de-
tails. Use the following to install the package:

341

https://parsnip.tidymodels.org/reference/glmnet-details.html
https://parsnip.tidymodels.org/reference/pls.html
http://mixomics.org/

if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager", repos = "http://cran.us.r-project.org")

if (!require("plsmod", quietly = TRUE))
install.packages("plsmod", repos = "http://cran.us.r-project.org")

BiocManager::install("mixOmics")

Once the package is installed, you can use the mixOmics engine:

library(plsmod)

pls(mode = "regression") %>%
set_engine("mixOmics")

PLS Model Specification (regression)

Computational engine: mixOmics

The engine has two tunable parameters, num_comp and predictor_prop.

A.4 Logistic regression models logistic_reg (classification)

See https://parsnip.tidymodels.org/reference/logistic_reg.html for details.

A.4.1 glm engine (default)

logistic_reg(mode = "classification") %>%
set_engine("glm")

Logistic Regression Model Specification (classification)

Computational engine: glm

See comments above for glm engine in linear regression models (Section A.2.2).

342

https://parsnip.tidymodels.org/reference/logistic_reg.html

A.4.2 glmnet engine (regularized logistic regression)

logistic_reg(mode = "classification") %>%
set_engine("glmnet")

Logistic Regression Model Specification (classification)

Computational engine: glmnet

See comments above for glmnet engine in linear regression models. (Section A.2.3).

A.5 Nearest Neighbor models (classification and regression)

Nearest neighbor models can be used for classification and regression. It is therefore necessary
to specify the mode of the model. You must choose classification or regression, i.e. mode =
"regression" or mode = "classification". See https://parsnip.tidymodels.org/reference/
nearest_neighbor.html for details.

A.5.1 kknn engine (default)

kknn is currently the only supported engine. It supports both classification and regression.
See https://parsnip.tidymodels.org/reference/kknn.html for details.

Use mode to specify either a classification or regression model:

nearest_neighbor(mode = "classification") %>%
set_engine("kknn")

K-Nearest Neighbor Model Specification (classification)

Computational engine: kknn

nearest_neighbor(mode = "regression") %>%
set_engine("kknn")

K-Nearest Neighbor Model Specification (regression)

Computational engine: kknn

343

https://parsnip.tidymodels.org/reference/nearest_neighbor.html
https://parsnip.tidymodels.org/reference/nearest_neighbor.html
https://parsnip.tidymodels.org/reference/kknn.html

The engine has several tunable parameters. Here is an example with a k-nearest neighbor
model with 5 neighbors and a distance weighting function:

nearest_neighbor(mode = "regression", neighbors = 5,
weight_func = "triangular") %>%
set_engine("kknn")

K-Nearest Neighbor Model Specification (regression)

Main Arguments:
neighbors = 5
weight_func = triangular

Computational engine: kknn

A triangular weight function applies more weight to neighbors that are closer to the observa-
tion. There are other options; rectangular weights all neighbors equally.

See https://rdrr.io/cran/kknn/man/train.kknn.html for details about the kknn package.

If you cannot install the kknn package from CRAN, you can install it directly from GitHub:

install.packages("devtools")
devtools::install_github("KlausVigo/kknn")

A.6 Linear discriminant analysis discrim_linear (classification)

See https://parsnip.tidymodels.org/reference/discrim_linear.html for details.

A.6.1 MASS engine (default)

You will need to load the discrim package to use this engine.

library(discrim)

discrim_linear(mode = "classification") %>%
set_engine("MASS")

344

https://rdrr.io/cran/kknn/man/train.kknn.html
https://parsnip.tidymodels.org/reference/discrim_linear.html

Linear Discriminant Model Specification (classification)

Computational engine: MASS

No tunable parameters.

A.7 Quadratic discriminant analysis discrim_quad (classification)

See https://parsnip.tidymodels.org/reference/discrim_quad.html for details.

A.7.1 MASS engine (default)

You will need to load the discrim package to use this engine.

library(discrim)

discrim_quad(mode = "classification") %>%
set_engine("MASS")

Quadratic Discriminant Model Specification (classification)

Computational engine: MASS

No tunable parameters.

A.8 Generalized additive models gen_additive_mod (regression and
classification)

See https://parsnip.tidymodels.org/reference/gen_additive_mod.html for details.

345

https://parsnip.tidymodels.org/reference/discrim_quad.html
https://parsnip.tidymodels.org/reference/gen_additive_mod.html

A.8.1 mgcv engine (default)

You will need to load the mgcv package to use this engine.

library(mgcv)

Loading required package: nlme

This is mgcv 1.9-3. For overview type 'help("mgcv-package")'.

gen_additive_mod(mode = "regression") %>%
set_engine("mgcv")

GAM Model Specification (regression)

Computational engine: mgcv

The model has two tuning parameters:

• select_features (default FALSE): if TRUE, the model will add a penalty term so that
terms can be penalized to zero.

• adjust_deg_free (default 1): level of penalization; higher values lead to more penaliza-
tion.

See Chapter 22 for more details.

A.9 Decision tree models decision_tree (classification, regression,
and censored regression)

See https://parsnip.tidymodels.org/reference/decision_tree.html for details.

A.9.1 rpart engine (default)

decision_tree(mode = "regression") %>%
set_engine("rpart")

346

https://parsnip.tidymodels.org/reference/decision_tree.html

Decision Tree Model Specification (regression)

Computational engine: rpart

The model has three tuning parameters:

• tree_depth (default 30): maximum depth of the tree
• min_n (default 2): minimum number of observations in a node
• cost_complexity (default 0.01): complexity parameter; higher values lead to simpler

trees

A.9.2 partykit engine

decision_tree(mode = "classification") %>%
set_engine("partykit")

! parsnip could not locate an implementation for `decision_tree` classification
model specifications using the `partykit` engine.

i The parsnip extension package bonsai implements support for this
specification.

i Please install (if needed) and load to continue.

Decision Tree Model Specification (classification)

Computational engine: partykit

The model has three tuning parameters:

• tree_depth: maximum depth of the tree, by default no restriction
• min_n (default 20): minimum number of observations in a node
• mtry: random number of predictors to try at each split, by default no restriction

The partykit engine requires installation of the partykit and bonsai packages.

A.10 Ensemble models I bag_tree (classification and regression)

See https://parsnip.tidymodels.org/reference/bag_tree.html for details.

347

https://parsnip.tidymodels.org/reference/bag_tree.html

A.10.1 rpart engine (default)

To use this engine, you need to load the baguette package.

library(baguette)

bag_tree(mode = "classification") %>%
set_engine("rpart")

Bagged Decision Tree Model Specification (classification)

Main Arguments:
cost_complexity = 0
min_n = 2

Computational engine: rpart

The model has four tuning parameters:

• tree_depth (default 30): maximum depth of the tree
• min_n (default 2): minimum number of observations in a node
• cp (default 0.01): complexity parameter; higher values lead to simpler trees
• class_cost (default NULL): cost of misclassifying each class; if NULL, the cost is set

to 1 for all classes

A.11 Ensemble models II boost_tree (classification and regression)

See https://parsnip.tidymodels.org/reference/boost_tree.html for details.

A.11.1 xgboost engine (default)

To use this engine, you need to have the xgboost package installed.

boost_tree(mode = "classification") %>%
set_engine("xgboost")

Boosted Tree Model Specification (classification)

Computational engine: xgboost

348

https://parsnip.tidymodels.org/reference/boost_tree.html

The model has eight tuning parameters. Here is an example with a model with 100 trees, a
learning rate of 0.1, and a maximum tree depth of 3:

boost_tree(mode = "classification", trees = 100, learn_rate = 0.1,
tree_depth = 3) %>%
set_engine("xgboost")

Boosted Tree Model Specification (classification)

Main Arguments:
trees = 100
tree_depth = 3
learn_rate = 0.1

Computational engine: xgboost

For details see https://parsnip.tidymodels.org/reference/details_boost_tree_xgboost.html.

A.11.2 lightgbm engine

To use this engine, you need to have the lightgbm and the bonsai packages installed.

library(bonsai)
boost_tree(mode = "regression") %>%
set_engine("lightgbm")

Boosted Tree Model Specification (regression)

Computational engine: lightgbm

This model has six tuning parameters. Here is an example with a model with 100 trees, a
learning rate of 0.1, and a maximum tree depth of 3:

boost_tree(mode = "regression", trees = 100, learn_rate = 0.1,
tree_depth = 3) %>%
set_engine("lightgbm")

349

https://parsnip.tidymodels.org/reference/details_boost_tree_xgboost.html

Boosted Tree Model Specification (regression)

Main Arguments:
trees = 100
tree_depth = 3
learn_rate = 0.1

Computational engine: lightgbm

For details see https://parsnip.tidymodels.org/reference/details_boost_tree_lightgbm.
html.

A.12 Ensemble models III rand_forest (classification and
regression)

See https://parsnip.tidymodels.org/reference/rand_forest.html for details.

A.12.1 ranger engine (default)

To use this engine, you need to have the ranger package installed.

rand_forest(mode = "classification") %>%
set_engine("ranger")

Random Forest Model Specification (classification)

Computational engine: ranger

The model has three tuning parameters. Here is an example with a model with 100 trees, a
minimum node size of 5, and number of randomly selected predictors at each split to 3:

rand_forest(mode = "classification", trees = 100, min_n = 5, mtry = 3) %>%
set_engine("ranger")

Random Forest Model Specification (classification)

Main Arguments:
mtry = 3

350

https://parsnip.tidymodels.org/reference/details_boost_tree_lightgbm.html
https://parsnip.tidymodels.org/reference/details_boost_tree_lightgbm.html
https://parsnip.tidymodels.org/reference/rand_forest.html

trees = 100
min_n = 5

Computational engine: ranger

Default values are:

• mtry: number of randomly selected predictors at each split; default is the square root of
the number of predictors

• min_n: minimum node size; default is 5 for regression and 10 for classification

If you want to extract information about variable importance from the model, you need to set
importance="impurity" in the ranger engine:

rand_forest(mode = "classification", trees = 100, min_n = 5, mtry = 3) %>%
set_engine("ranger", importance = "impurity")

Random Forest Model Specification (classification)

Main Arguments:
mtry = 3
trees = 100
min_n = 5

Engine-Specific Arguments:
importance = impurity

Computational engine: ranger

A.12.2 randomForest engine

To use this engine, you need to have the randomForest package installed.

rand_forest(mode = "regression") %>%
set_engine("randomForest")

Random Forest Model Specification (regression)

Computational engine: randomForest

351

The ranger package is considerably faster than randomForest, so we recommend using ranger
instead. However, if you want to use randomForest, here is an example with a model with
100 trees, a minimum node size of 5, and number of randomly selected predictors at each split
to 3:

rand_forest(mode = "regression", trees = 100, min_n = 5, mtry = 3) %>%
set_engine("randomForest")

Random Forest Model Specification (regression)

Main Arguments:
mtry = 3
trees = 100
min_n = 5

Computational engine: randomForest

A.13 Support vector machines I svm_linear (classification and
regression)

See https://parsnip.tidymodels.org/reference/svm_linear.html for details.

For SVM models, it is recommended to normalize the predictors to a mean of zero and a
variance of one.

A.13.1 LiblineaR engine (default)

To use this engine, you need to have the LiblineaR package installed.

svm_linear(mode = "classification") %>%
set_engine("LiblineaR")

Linear Support Vector Machine Model Specification (classification)

Computational engine: LiblineaR

The model has two tuning parameters. Here is an example with a model with a cost of 0.1
and a margin of 1:

352

https://parsnip.tidymodels.org/reference/svm_linear.html

svm_linear(mode = "classification", cost = 0.1, margin = 1) %>%
set_engine("LiblineaR")

Linear Support Vector Machine Model Specification (classification)

Main Arguments:
cost = 0.1
margin = 1

Computational engine: LiblineaR

More details: https://parsnip.tidymodels.org/reference/details_svm_linear_LiblineaR.
html

A.13.2 kernlab engine

To use this engine, you need to have the kernlab package installed.

svm_linear(mode = "regression") %>%
set_engine("kernlab")

Linear Support Vector Machine Model Specification (regression)

Computational engine: kernlab

The model has two tuning parameters. Here is an example with a model with a cost of 0.1
and a margin of 1:

svm_linear(mode = "regression", cost = 0.1, margin = 1) %>%
set_engine("kernlab")

Linear Support Vector Machine Model Specification (regression)

Main Arguments:
cost = 0.1
margin = 1

Computational engine: kernlab

The margin parameter is not used in regression models.

353

https://parsnip.tidymodels.org/reference/details_svm_linear_LiblineaR.html
https://parsnip.tidymodels.org/reference/details_svm_linear_LiblineaR.html

A.14 Support vector machines II svm_poly (classification and
regression)

See https://parsnip.tidymodels.org/reference/svm_poly.html for details.

A.14.1 kernlab engine (default)

To use this engine, you need to have the kernlab package installed.

svm_poly(mode = "classification") %>%
set_engine("kernlab")

Polynomial Support Vector Machine Model Specification (classification)

Computational engine: kernlab

The model has four tuning parameters. Here is an example with a model with a cost of 0.1, a
scale_factor of 0.75, and a degree of 2:

svm_poly(mode = "classification", cost = 0.1, scale_factor = 0.75,
degree = 2) %>%
set_engine("kernlab")

Polynomial Support Vector Machine Model Specification (classification)

Main Arguments:
cost = 0.1
degree = 2
scale_factor = 0.75

Computational engine: kernlab

For regression models, you can also tune the margin parameter.

A.15 Support vector machines III svm_rbf (classification and
regression)

See https://parsnip.tidymodels.org/reference/svm_rbf.html for details.

354

https://parsnip.tidymodels.org/reference/svm_poly.html
https://parsnip.tidymodels.org/reference/svm_rbf.html

A.15.1 kernlab engine (default)

To use this engine, you need to have the kernlab package installed.

svm_rbf(mode = "classification") %>%
set_engine("kernlab")

Radial Basis Function Support Vector Machine Model Specification (classification)

Computational engine: kernlab

The model has three tuning parameters. Here is an example with a model with a cost of 0.1
and a rbf_sigma of 0.75:

svm_rbf(mode = "classification", cost = 0.1, rbf_sigma = 0.75) %>%
set_engine("kernlab")

Radial Basis Function Support Vector Machine Model Specification (classification)

Main Arguments:
cost = 0.1
rbf_sigma = 0.75

Computational engine: kernlab

For regression models, you can also tune the margin parameter.

355

B Defining models using formulae

B.1 Linear models

In R, statistical models are usually defined using a formula. Here is an example:

y ~ x1 + x2 + x3

This formula describes a linear model of the form:

𝑦 = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑦0

The outcome 𝑦 is a linear combination of the predictors 𝑥1, 𝑥2, and 𝑥3 with coefficients 𝑐1,
𝑐2, and 𝑐3. 𝑦0 is a constant intercept. Note how the intercept is not included in the model
definition. If you want to make the intercept explicit you can write the following formula
where 1 represents the constant, but modeled intercept 𝑦0.

y ~ x1 + x2 + x3 + 1

To exclude the intercept and fit a linear model without intercept, use one of the following
options:

y ~ x1 + x2 + x3 - 1
y ~ x1 + x2 + x3 + 0

If your variable names contain spaces, you need to surround the name in the formula with the
backtick character `.

quality ~ `fixed acidity` + `volatile acidity` + chlorides

Here, “fixed acidity” and “volatile acidity” are names of variables or columns in a data frame.

You will frequently come across formulas like y ~ . in the following linear regression model:

356

model <- lm(y ~ ., data=df)

Here, the . stands for “all columns not otherwise in the formula”. For example, if the tibble
(or data frame) contains columns a, b, c, and y, then y ~ . is equivalent to the explicit
formula y ~ a + b + c.

While it might be tempting to use the shortcut y ~ ., it is better to be explicit and
list all terms to ensure reproducibility. Even if we know exactly what is included in
a dataset when we develop the model, data can change over time. For example, if
data are downloaded from an external source and columns are added, model results
will change. Another source of issues will be columns added to the dataset during
exploratory data analysis.

LIGHTBULB Useful to know

With Tidymodels, it’s possible to use the full capabilities of formulas described here
only if you directly fit a model. With workflows, recipes only accept equations like
the ones shown in this section. Interactions and transformations must be defined using
preprocessing functions like step_interact or step_sqrt.1

B.2 Linear models with interactions

The models in the previous section included only main effects. It is easy to extend the model
definition to include interaction terms. Interactions are identified using :, e.g. a:b represents
interaction of a and b. Here is an example:

y ~ a + b + c + a:b

This represents the following linear model:

𝑦 = 𝑐1𝑎 + 𝑐2𝑏 + 𝑐3𝑐 + 𝑐4𝑎𝑏 + 𝑦0

The formula can be written in a more concise way using *:

y ~ a*b + c

1You will get the following error message when you define add a formula to a recipe that contains interac-
tions or transformations: ! No in-line functions should be used here; use steps to define baking
actions.

357

The term a*b is expanded to a + b + a:b.

If you want to include interaction terms between several predictors, the following variations
can be used:

y ~ (a + b + c)^2
y ~ (a + b + c)**2

It expands to y ~ a + b + c + a:b + a:c + b:c.

You can extend this expression to include interactions of more than two variables. For exam-
ple:

y ~ (a + b + c)^3

is equivalent to

y ~ a + b + c + a:b + a:c + b:c + a:b:C

You can only specify interactions term in recipes using the step_interact func-
tion. The function uses the same syntax, but interprets the formula slightly dif-
ferent. For example, you can specify a*b which is normally interpreted as a + b
+ a:b. recipes will add the interaction a:b but not the main effects. In prac-
tice, this makes no difference, as the main effects must be included in the recipe’s
formula and therefore will be present. See Section 7.7 for more details.

B.3 Linear models with transformations

Formula can also be used to define variable transformations. For example,

log(y) ~ a + log(x)

defines the following linear model:

log 𝑦 = 𝑐1𝑎 + 𝑐2 log𝑥 + 𝑦0

Here, we take the logarithm for both the outcome 𝑦 and the predictor 𝑥 and train a linear
model using the transformed variables.

Not all transformations can be easily expressed. Consider the following linear model:

𝑦 = 𝑐1𝑥2 + 𝑦0

One could be tempted to write this as y ~ x^2. This is however interpreted as y ~ x*x which
is equivalent to y ~ x. The correct way to formulate this model is to use the I() function.

358

y ~ I(x^2)

Whatever is inside the brackets, is evaluated as an expression.

Another case for using the I() function is this linear model:

𝑦 = 𝑐1𝑎 + 𝑐2(𝑏 + 𝑐) + 𝑦0

To express this in a formula use:

y ~ a + I(b + c)

As we’ve seen for interactions, you can also only specify transformations in recipes
using preprocessing functions. See Chapter 7 for more details and examples.

B.4 Miscellaneous

There are additional operators that you may come across. The %in% or/operator
expandsa/bora %in% btoa + a:b‘.

The - operator allows to remove terms. E.g. the following formula are identical.

y ~ (a + b + c)^2 - a:b
y ~ a + b + c + a:b + a:c + b:c - a:b
y ~ a + b + c + a:c + b:C

LIGHTBULB Useful to know

This approach to define statistical models in R, was developed by Wilkinson and Rogers
in 1973 (G. N. Wilkinson and Rogers 1973). It is also available in Python using the patsy
package. Patsy is used by the statsmodels package and a few other Python packages.

359

C Markdown and R Markdown

Markdown allows creating formatted documents using a plain text formatting syntax. It is
widely used across the web for writing content due to its simplicity and readability. Created
in 2004, it uses simple, intuitive characters—like asterisks for bold or hashes for headers—to
add structure, which is then parsed into HTML for web publishing, document creation, or
note-taking. It is widely favored for its portability and speed. You likely have already used
Markdown in various platforms, such as GitHub, Stack Overflow, or blogging sites. Simple
formatting examples include:

• **bold text** for bold text
• *italic text* for italic text
• # Header 1 for a top-level header
• ## Header 2 for a second-level header
• - List item for a bullet point

and so on. There are many resources online to learn about Markdown syntax, for example,
the Markdown Guide.

In R Markdown, the code is executed and the results are included in the document. This is a
very powerful way of writing a document. If you change the code, the document is updated
automatically. This is very useful if you need to update a document regularly. For example,
if you need to update a report every month with the latest data. For larger documents that
require considerable computation time, caching can be used to speed up the process (see
Section D.2).

C.1 General syntax

See the R Markdown documentation on the Posit website for a detailed description of the R
Markdown syntax. Here, we cover only a few important aspects that should you help write
documents using R Markdown.

C.2 Code chunks

In order to embed R code in a document, we use the following syntax:

360

https://www.markdownguide.org/
https://docs.posit.co/connect/user/rmarkdown/index.html


```{r chunk-name}
x = 123
```

The three backticks define a code block. The {r} indicates that we want to execute the content
using R. Here, we also name the code chunk chunk-name. This is optional but useful, and
required if you want to reference figures.

C.3 Chunk options

There are many options to control the behavior of a code chunk. In this document, we used a
subset of them. Use the following to avoid displaying warnings and messages:

```{r chunk-name}
#| warning: FALSE
#| message: FALSE
...
```

However, only add these options if you understand what the displayed warning or message
means and you are sure that you want to hide it.

C.4 Figures

Figures come with a large number of options. The ones we used in this document are:

• fig.cap: Caption of the figure.
• fig.width: Width of the figure in inches.
• fig.height: Height of the figure in inches.
• fig.align: Alignment of the figure. Possible values are left, right and center.
• dev: Specifies the format of the figure. The default depends on the output format. For

HTML, the default is png; for PDF it is pdf. If you create a PDF file and your graph
contains a large number of points, it will be better to use #| dev: png to avoid a large
file size and faster rendering of the PDF.

361


```{r fig-figure-demo}
#| fig.cap: "Figure caption shown below the plot"
#| fig.width: 4
#| fig.height: 4
#| fig.align: "center"
#| out.width: 75%
#| dev: "png"
plot(1:10)
```

This will create the following table with the caption shown below the plot. The width of the
figure is 75% of the text width and figure is centered.

Figure C.1: Figure caption shown below the plot

In markdown, we can reference the Figure using \@ref(fig:figure-demo). For example,
Figure C.1 shows a plot of the numbers 1 to 10.

362

LIGHTBULB Useful to know

If your references don’t show up, check if you knit to either bookdown::pdf_document2
or bookdown::html_document2. The previous format for HTML documents
(html_document) requires a different format for references.

Currently, knitting to PDF using markdown requires to have either out.width or fig.align
specified. Otherwise, the resulting document will neither contain a figure caption nor will
references work. You can also set fig.align as a global option:

knitr::opts_chunk$set(fig.align="center")

C.5 Referencing R variables in text

Sometimes, you might want to reference calculation results in your text. If you add the results
manually, but later on change the calculations, the actual results and the text will no longer
reference the same values. It is possible to embed results in text using markdown to avoid this
situation. Here is an example:

rmse <- 1.2345678

We can reference the variable rmse in the text using:

The RMSE value is `r round(rmse, 3)`.

The command round(rmse, 3) will be executed and the result shown in the text:

The RMSE value is 1.235.

C.6 Troubleshooting

C.6.1 ! LaTeX Error: Unicode character ^^[(U+001B)

When you get this error message while knitting to LaTeX, set warning and message to
FALSE.

```{r figure-demo}
#| warning: FALSE
#| message: FALSE
... code that ouptuts a warning that causes knitting to fail ...
```

363

INFO Further information

• Overview of R markdown options: https://www.rstudio.com/wp-content/uploads/
2015/03/rmarkdown-reference.pdf

364

https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

D Technical details

Once you start to develop models for larger datasets, you will realize that tuning models can
take a long time. There are a few strategies to help speed up the process.

• Work with smaller datasets during development of your workflow until you get your
R code right. Then switch to the full dataset. Chapter 12 shows how to create a
representative subset of your data. This is a good strategy if you are working with a
large dataset and you are not sure if your code is correct.

• Use parallel processing to speed up the tuning process. Approaches like cross-validation
greatly benefit from this. Section D.1 shows how to do this. We made use of this
approach in various chapters in this book. This is a good strategy that is useful for
larger datasets.

• Use caching to speed up the tuning process. Section D.2 shows how to use caching to
speed up the tuning process. This is a good strategy for when you are confident in your
code and results, and you work on describing and discussing them in the text.

Load required packages:

library(tidymodels)
library(tidyverse)

D.1 Parallel processing

Modern computers no longer exist of a single CPU, but have multiple cores. You can use these
cores to speed up the tuning process. R has a variety of packages to setup and use parallel
processing on your computer. The package future is one of them. At the start of your R or
_Rmarkdown file, you need to setup the parallel processing environment.

library(future)
plan(multisession,
workers = parallel::detectCores(logical = FALSE))

365

After importing the future package, we create a cluster of workers. The number of workers is
set to the number of cores on your computer. You can change this number to a lower number
if you want to keep some cores available for other tasks or if your calculations runs out of
memory (RAM).

file <- "https://gedeck.github.io/DS-6030/datasets/UniversalBank.csv.gz"
data <- read_csv(file) %>%
select(-c(ID, `ZIP Code`)) %>%
rename(

Personal.Loan = `Personal Loan`,
Securities.Account = `Securities Account`,
CD.Account = `CD Account`

) %>%
mutate(

Personal.Loan = factor(Personal.Loan, labels = c("Yes", "No"),
levels = c(1, 0)),

Education = factor(Education,
labels = c("Undergrad", "Graduate", "Advanced")),

)

formula <- Personal.Loan ~ Income + Family + CCAvg + Education +
Mortgage + Securities.Account + CD.Account + Online + CreditCard

recipe_rf <- recipe(formula, data = data)
model_rf <- rand_forest(mode = "classification",
mtry = tune(), trees = tune()) %>%
set_engine("ranger")

workflow_rf <- workflow() %>%
add_recipe(recipe_rf) %>%
add_model(model_rf)

parameters <- extract_parameter_set_dials(workflow_rf)
parameters <- parameters %>%
update(

mtry = mtry(c(2, 6)),
trees = trees(c(100, 500))

)

set.seed(1)
repeat 10-fold cross-validation five times
resamples <- vfold_cv(data, v = 10, repeats = 5)

timings <- tibble()
for (number_cores in 1:20) {
with(plan(multisession, workers = number_cores), {

366

train random forest model five times using cross-validation
and measure execution time
start_time <- Sys.time()
tune_rf <- tune_grid(
workflow_rf,
resamples = resamples,
grid = grid_regular(parameters, levels = c(5, 2))

)
end_time <- Sys.time()
time_taken <- round(end_time - start_time, 2)
if (length(timings) == 0) {
timings <- tibble(
number_cores = number_cores,
time_taken = time_taken

)
} else {
timings <- timings %>%
add_row(
number_cores = number_cores,
time_taken = time_taken

)
}

})
}
timings$average_time_taken <- as.numeric(timings$time_taken) / 5
timings$ideal <- timings$average_time_taken[1] / timings$number_cores

We train 10×5×10 = 500 models (10 tuning, 5 repeats, 10-fold cross-validation). Figure D.1
shows the reduction in tuning time when parallel processing is used.

ggplot(timings, aes(x = number_cores, y = average_time_taken)) +
geom_line() +
geom_line(aes(y = ideal), color = "grey") +
geom_point() +
geom_vline(

xintercept = parallel::detectCores(logical = FALSE),
color = "red") +

xlab("Number of cores") +
ylab("Average time required for tuning (seconds)")

367

5

10

15

20

5 10 15 20
Number of cores

A
ve

ra
ge

 ti
m

e
re

qu
ire

d
fo

r
tu

ni
ng

 (
se

co
nd

s)

Figure D.1: Average time require for tuning a random forest model using different number of
cores. The red line indicates the number of physical cores on the computer. The
grey line the expected time if parallel execution would be perfect.

Without parallelization, tuning the random forest model takes about 20.4 seconds. Distribut-
ing the calculation on two cores, reduces the time to 11.3 seconds. If parallelization would
be perfect, the time should be reduced to 10.2 seconds. There is overhead involved in paral-
lelization and we can already see the effect of this here. Nevertheless, increasing the number
of cores even more, brings the calculation time down to 5.4.

The improvement go through a minimum between 5 and 10 cores. After that, the average
time required for tuning increases again slightly. The computer used for the graph was a M3
Macbook Pro with 14 cores.

On some computers, you might see hyperthreading. This is a technique to make the computer
appear to have more cores than it actually has. This can be useful for tasks that require a lot
of communication with other resources. However, for calculations like this, hyperthreading is
not as efficient as physical cores.

368

LIGHTBULB Useful to know

When you use parallelization and you get error messages like this, your computer is
running out of memory (RAM).

Error in unserialize(socklist[[n]]):
error reading from connection

Error in serialize(data, node$con):
error writing to connection

Error in `summary.connection()`: ! invalid connection

In this case, reduce the number of cores in the cluster. For example, set
plan(multisession, workers = 4) to use only 4 cores.

INFO Further information

The tidymodels package will already use parallelization if the a cluster is setup. However,
if you want to parallelize your own code, you can use the foreach package. It’s fairly
easy to use. See the following links for examples: - https://cran.r-project.org/web/
packages/doParallel/vignettes/gettingstartedParallel.pdf gives a short overview on how
to use the doParallel package. - https://www.blasbenito.com/post/02_parallelizing_
loops_with_r/ is a more in depth introduction into parallelization with the foreach
package.

D.2 Caching

Running the code in the previous chapter takes more than 156 seconds. Executing the code
every time this document needs to be recreated, will make working with the document in-
sufferable. We can use caching to speed up the process. Caching is a technique to save the
results of a calculation and reuse them later. The next time the code is executed, the results
are loaded from the cache instead of being recalculated.

Using caching with Rmarkdown is straightforward. Above we used the cache option in the
code chunk header to enable caching. Here is the markup for the code chunk that loads and
prepares the data.

```{r cache-prepare-model}
#| message: FALSE
#| warning: FALSE
#| cache: TRUE

369

https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf
https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf
https://www.blasbenito.com/post/02_parallelizing_loops_with_r/
https://www.blasbenito.com/post/02_parallelizing_loops_with_r/


code to load and prepare the model

```

Note two points here. Firstly, the code chunk has a name. Secondly, the code chunk header
contains the cache: TRUE option. The name identifies the cache. If you change the code inside
the code chunk, the cache is invalidated and the code is executed again. If you don’t specify a
name, Rmarkdown will create a random name for the code chunk. This is not recommended
as it can lead to issues later on.

We also use caching the code chunk that tunes the model.

```{r cache-time-tuning}
#| message: FALSE
#| warning: FALSE
#| cache: TRUE

code to tune the model

```

Like before, we use the cache: TRUE option which will cache the results of this code chunk
too. Consider now the case where you knitted the document and both code chunks are cached
and you make a change to the first code chunk which leads to a change of the data. When
you knit the document again, this data are reloaded and preprocessed. The code chunk that
tunes the model however was not changed and would in principle not be executed again. This
would lead to invalid results. To avoid this, we use the dependson option in the code chunk
header of the code chunk that tunes the model. The dependson option tells Rmarkdown that
the code chunk that tunes the model depends on the code chunk that loads and prepares the
model. If the code chunk that loads and prepares the model is executed, the code chunk that
tunes the model will be executed too.

If you have a code chunk that depends on multiple previous code chunks, you can use a comma
separated list of names in the dependson option. In this example, test3 depends on test1
and test2.

```{r test1}
#| cache: TRUE
x = 10
x
```

```{r test2}

370



#| cache: TRUE
#| dependson: test1
y = 2
y
```

```{r test3}
#| cache: TRUE
#| dependson: test1, test2
x + y
```

You can make a code chunk depend on all previous code chunks by using the dependson=knitr::all_labels()
option.

LIGHTBULB Useful to know

Another option is to add the following code at the start of your document.

```{r}
knitr::opts_chunk$set(cache=TRUE, autodep=TRUE)
```

This will cache all code chunks in the document and automatically create the dependen-
cies based on the variables used in and between code chunks.
If you use this approach together with parallelization, explicitly set the code that starts
the cluster to not being cached.

```{r}
#| cache: FALSE
library(future)
plan(multisession,

workers = parallel::detectCores(logical = FALSE))
```

INFO Further information

• https://tune.tidymodels.org/articles/extras/optimizations.html more information
on how to speed up your tidymodels code in particular with parallel processing.

• Caching has a lot more options that are not covered here. Check these sources for
more information:

371

https://tune.tidymodels.org/articles/extras/optimizations.html

– https://r4ds.had.co.nz/r-markdown.html#caching
– https://bookdown.org/yihui/rmarkdown-cookbook/cache-path.html
– https://bookdown.org/yihui/rmarkdown-cookbook/cache-lazy.html
– https://yihui.org/knitr/options/#cache

372

https://r4ds.had.co.nz/r-markdown.html#caching
https://bookdown.org/yihui/rmarkdown-cookbook/cache-path.html
https://bookdown.org/yihui/rmarkdown-cookbook/cache-lazy.html
https://yihui.org/knitr/options/#cache

References

Breiman, Leo, Jerome H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and
Regression Trees. Chapman & Hall.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction
to Statistical Learning: With Applications in R. Springer Texts in Statistics. New York,
NY: Springer US. https://doi.org/10.1007/978-1-0716-1418-1.

Muschelli, John. 2020. “ROC and AUC with a Binary Predictor: A Potentially Misleading
Metric.” Journal of Classification 37 (3): 696–708. https://doi.org/10.1007/s00357-019-
09345-1.

Scott, David W. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization.
1st edition. New York: John Wiley & Sons.

Shmueli, Galit, Peter C. Bruce, Peter Gedeck, Inbal Yahav, and Nitin R. Patel. 2023.
“Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R,
2nd Edition | Wiley.” Wiley.com. https://www.wiley.com/en-us/Machine+Learn-
ing+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applica-
tions+in+R%2C+2nd+Edition-p-9781119835172.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. Boca Raton:
Chapman and Hall.

Trifonova, Oxana, Petr Lokhov, and A. I. Archakov. 2014. “Metabolic Profiling of Hu-
man Blood.” Biomeditsinskaya Khimiya 60 (May): 281–94. https://doi.org/10.18097/
pbmc20146003281.

Wickham, Hadley. 2011. “The Split-Apply-Combine Strategy for Data Analysis.” Journal of
Statistical Software 40 (April): 1–29. https://doi.org/10.18637/jss.v040.i01.

Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023. “R for Data
Science (2e).” https://r4ds.hadley.nz/.

Wilkinson, G. N., and C. E. Rogers. 1973. “Symbolic Description of Factorial Models for
Analysis of Variance.” Journal of the Royal Statistical Society. Series C (Applied Statistics)
22 (3): 392–99. https://doi.org/10.2307/2346786.

Wilkinson, Leland. 2005. The Grammar of Graphics. Statistics and Computing. New York:
Springer-Verlag. https://doi.org/10.1007/0-387-28695-0.

Wolpert, David H. 1992. “Stacked Generalization.” Neural Networks 5 (2): 241–59. https:
//doi.org/10.1016/S0893-6080(05)80023-1.

Zou, Hui, Trevor Hastie, and Robert Tibshirani. 2006. “Sparse Principal Component Anal-
ysis.” Journal of Computational and Graphical Statistics 15 (2): 265–86. https://www.
jstor.org/stable/27594179.

373

https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/s00357-019-09345-1
https://doi.org/10.1007/s00357-019-09345-1
https://doi.org/10.18097/pbmc20146003281
https://doi.org/10.18097/pbmc20146003281
https://doi.org/10.18637/jss.v040.i01
https://doi.org/10.2307/2346786
https://doi.org/10.1007/0-387-28695-0
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://www.jstor.org/stable/27594179
https://www.jstor.org/stable/27594179

	Introduction
	Tidyverse
	Tidymodels
	Getting Help
	RStudio

	Exploratory data analysis
	Data loading and cleaning
	Load data
	Inspect data to identify missing values
	Identifying outliers
	Summary
	Code

	Manipulating data
	Example: manipulating flights data
	Overview of dplyr functionality
	Sorting data
	Selecting columns
	Filtering rows
	Modifying tables

	Handling missing values
	Convert placeholders to missing values
	Remove or replace missing values

	Split - Apply - Combine
	Two examples
	Applying functions to groups adding to the original table
	Shortcuts

	Concatenate and join data
	Concatenating data
	Joins

	Additional tidyr functions
	Code

	Data visualization
	ggplot2 — the basics
	Visualizing a single variable
	Visualizing two variables
	Visualizing multiple variables
	Saving plots to file
	autoplot and autolayer functions
	Code

	Interactive visualization
	plotly in R.
	Two dimensional scatter plot using plot_ly
	Add interactivity to ggplot figure using ggplotly
	Three dimensional plots using plot_ly
	Code

	Training models
	Training predictive models
	What is tidymodels?
	Code

	Workflows: Connecting the parts
	Workflows in tidymodels
	Workflow example
	Models vs. workflows

	Data preprocessing
	Preprocessing data with recipes
	Transformations of individual features
	Discretizing numeric variables
	Data normalization
	Imputing missing data
	Dummy variables
	Interactions
	Principal components
	Filtering variables
	Code

	Regression models
	Training regression models using tidymodels
	The mtcars dataset
	Predicting mpg in the mtcars dataset using tidymodels
	Code

	Measuring performance of regression models
	Build a regression model
	Calculate performance metrics
	Code

	Classification models
	Training classification models using tidymodels
	The UniversalBank dataset
	Tidymodels: predicting Personal.Loan in the UniversalBank dataset
	Visualizing the overall model performance using a ROC curve
	Code

	Measuring performance of classification models
	Classification metrics
	Specifying the event of interest
	Thresholds

	Class probability metrics
	Additional curves
	Code

	Validating and tuning models
	Sampling from a dataset
	Sampling in statistical modeling
	Creating an initial split of the data into training and holdout set
	Creating an initial split of the data into training, validation, and holdout set
	Code

	Validating models
	Model validation using holdout set
	Model validation using cross-validation
	Model validation using bootstrapping
	Distribution of metrics for bootstrap samples

	Code

	Model tuning - the basics
	Specifying tunable parameters
	Data-specific tuning parameters
	Tuning a workflow
	Grid search strategies
	Bayesian Hyperparameter optimization
	Code

	Model tuning - examples
	Feature engineering
	Polynomial regression
	Step function regression
	Spline regression

	Regularization
	Feature selection
	Hyperparameter tuning
	Define the hyperparameter search space
	Tune the threshold

	The one-standard-error rule
	Code

	Stacking models
	Code

	Model deployment
	Model packaging and infrastructure
	Deployment Strategies
	Monitoring and maintenance (post-deployment)
	R: the vetiver package

	Unsupervised learning
	Dimensionality reduction
	Principal component analysis (PCA)
	PCA
	Truncated PCA
	Sparse principal component analysis (SPCA)

	Kernel PCA
	UMAP
	Isomap (multi-dimensional scaling, MDS)
	Partial Least Squares (PLS)
	Code

	Clustering
	k-means clustering
	Hierarchical clustering
	Determine the number of clusters
	Code

	Model deep dives
	Linear regression models
	Build a linear regression model
	Analyze model parameters
	Extract model statistics
	Diagnostics plots
	Residuals vs Fitted
	Normal Q-Q plot
	Scale-location plot
	Cook's distance plot
	Residuals vs Leverage
	Cooks's distance vs Leverage

	Code

	Regularized Generalized linear models (glmnet)
	GLM implementation glmnet
	glmnet in tidymodels
	Coefficients - one of many
	Plotting the coefficients

	Code

	Generalized additive models (GAM)
	Specifying GAMs in formula notation
	GAMs in Tidymodels
	Example: GAM for the mpg dataset
	Utility functions
	Linear regression model
	GAM with splines
	GAM in workflows

	Using the plot function of the mgcv model
	Code

	Visualizing decision tree models
	Classification Trees
	Visualizing the tree (graph)
	Visualizing the tree (text)
	Visualizing the tree (rules)

	Regression Trees
	Visualizing the tree (graph)

	Code

	Variable or feature importance
	The vip package
	Model specific measures of variable importance
	Linear model
	Random forests

	General approaches to calculate variable importance
	Code

	Examples
	Model tuning
	Code

	Threshold selection
	Code

	Appendices
	Models
	Non-informative model null_model (regression and classification)
	Linear regression models linear_reg (regression)
	lm engine (default)
	glm engine (generalized linear model)
	glmnet engine (regularized linear regression)

	Partial least squares regression pls (regression)
	mixOmics engine (default)

	Logistic regression models logistic_reg (classification)
	glm engine (default)
	glmnet engine (regularized logistic regression)

	Nearest Neighbor models (classification and regression)
	kknn engine (default)

	Linear discriminant analysis discrim_linear (classification)
	MASS engine (default)

	Quadratic discriminant analysis discrim_quad (classification)
	MASS engine (default)

	Generalized additive models gen_additive_mod (regression and classification)
	mgcv engine (default)

	Decision tree models decision_tree (classification, regression, and censored regression)
	rpart engine (default)
	partykit engine

	Ensemble models I bag_tree (classification and regression)
	rpart engine (default)

	Ensemble models II boost_tree (classification and regression)
	xgboost engine (default)
	lightgbm engine

	Ensemble models III rand_forest (classification and regression)
	ranger engine (default)
	randomForest engine

	Support vector machines I svm_linear (classification and regression)
	LiblineaR engine (default)
	kernlab engine

	Support vector machines II svm_poly (classification and regression)
	kernlab engine (default)

	Support vector machines III svm_rbf (classification and regression)
	kernlab engine (default)

	Defining models using formulae
	Linear models
	Linear models with interactions
	Linear models with transformations
	Miscellaneous

	Markdown and R Markdown
	General syntax
	Code chunks
	Chunk options
	Figures
	Referencing R variables in text
	Troubleshooting
	! LaTeX Error: Unicode character ^^[(U+001B)

	Technical details
	Parallel processing
	Caching

	References

